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1 The self-consistent field algorithm

The following algorithm can be used to implement the self-consistent field
method (SCF) for the restricted Hartree-Fock theory (RHF) in the atomic-
orbital basis:

1. Specify molecular geometry, basis set.

2. Compute initial data.

(a) Compute nuclear repulsion energy (Enuc).

(b) Compute overlap integrals (S).

(c) Compute one-electron integrals (Hµν = 〈µ|ĥ|ν〉 = Tµν+Vµν).

(d) Compute two-electron integrals [(µν|ρσ)].
Note that most of the quantum chemistry codes compute two-
electron integrals sorted in the Chemists’ notation.

3. Construct the S−1/2 matrix.

(a) Diagonalize the S matrix.∑
µν

Uµµ′SµνUνν′ = sµ′δµ′ν′ (1)

(b) Compute the S−1/2 matrix.

(S−1/2)µν =
∑
µ′

Uµµ′
1
√
sµ′
Uνµ′ (2)

4. Construct initial density matrix.

(a) Form initial Fock matrix neglecting the two-electron term.

F = H (3)

(b) Compute transformed Fock matrix.

F̃ = S−1/2 F S−1/2 (4)

2



(c) Diagonalize the F̃ matrix.

F̃ C̃ = C̃ ε (5)

(d) Compute SCF eigenvector matrix.

C = S−1/2 C̃ (6)

(e) Compute initial density matrix.

Dµν =

n/2∑
i

Ci∗
µ C

i
ν . (7)

5. The SCF iteration.

(a) Compute the new Fock matrix including the two-electron
contribution.

Fµν = 〈µ|ĥ|ν〉+
N∑
ρσ

Dρσ(2 〈µρ|νσ〉 − 〈µρ|σν〉) (8)

(b) Compute the electronic and total energies.

Eelec =
N∑
µν

Dµν(Hµν + Fµν) (9)

Etotal = Enuc + Eelec (10)

(c) Compute transformed Fock matrix.

F̃ = S−1/2 F S−1/2 (11)

(d) Diagonalize the F̃ matrix.

F̃ C̃ = C̃ ε (12)

(e) Compute SCF eigenvector matrix.

C = S−1/2 C̃ (13)
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(f) Compute the new density matrix.

Dµν =

n/2∑
i

Ci∗
µ C

i
ν . (14)

(g) Test convergence of the energy and the density matrix.

i. Check RMS of the density matrix elements:

∆rms =

√∑
µν

(Dnew
µν −Dold

µν )2 < ∆D (15)

ii. Check energy difference:

∆E = E
(n)
elec − E

(n−1)
elec < ∆E (16)

(h) If SCF is converged, stop the iterations. If not, continue.

2 Using Python to implement SCF

Python is a very powerful high-level programming language that can be used
to implement complicated algorithms in just a few lines of code. Using its
extensive mathematics library and the third-party libraries, such as Numpy
and Scipy, many methods in quantum chemistry can be programmed very
efficiently. In addition, Python is compatible with other popular program-
ming languages (such as C++ and Fortran), which can be used to enhance
Python’s functionality and computational efficiency. This short overview is
intended to illustrate some of the Python’s capabilities. For more details,
please refer to the information available online.

2.1 Matrix and tensor operations using Numpy

A powerful way to perform matrix and tensor operations in Python is to use
Numpy. To check if Numpy is available on your system, open the Python in-
terpreter (run the Python executable) and in the command line type import

numpy, e.g.:
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[Silverblade:~] alex% python

Python 2.7.13 (default, Mar 23 2017, 10:12:46)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy

>>>

If running the import command does not cause any errors, your Python
should be configured to work with Numpy. Since Numpy is an external li-
brary, it is not loaded by default. Thus, every Python script that uses Numpy
should contain the import numpy line. As any Python library, Numpy can
be loaded with an alias:

>>> import numpy as np

The above line allows to shorten the Numpy function calls, e.g. np.sqrt(4.0)
instead of numpy.sqrt(4.0).

Numpy allows to efficiently store and manipulate data using the so-
called numpy arrays. For example, a matrix can be represented using a
two-dimensional numpy array as follows:

>>> A = np.random.random((4,4))

>>> print A

[[ 0.41876825 0.46548118 0.72390022 0.82810599]

[ 0.91278577 0.6193322 0.89722354 0.92845717]

[ 0.63918077 0.56033718 0.24796446 0.74611299]

[ 0.07634179 0.81549647 0.95896538 0.01995572]]

In the above example, we used the Numpy function random of the np.random
module to generate a 4 × 4 matrix with random floating-point numbers. A
powerful feature of the numpy arrays is that they can be used to represent
tensors with more than two dimensions (up to 32). As an example, a 2× 2×
2× 2 four-dimensional array can be created as:

>>> X = np.empty((2,2,2,2))

>>> X

array([[[[ 0., 0.],

[ 0., 0.]],

[[ 0., 0.],
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[ 0., 0.]]],

[[[ 0., 0.],

[ 0., 0.]],

[[ 0., 0.],

[ 0., 0.]]]])

In this example, we created an empty numpy array that is filled with floating-
point zeros. Note that in both examples above the dimensions of the numpy
arrays are represented as Python tuples, e.g. (4,4) or (2,2,2,2). Thus, the
number of elements in a tuple defines the number of dimensions in a numpy
array. There are many other ways to create numpy arrays. For example,
a numpy array can be obtained by “stacking” two existing numpy arrays
(using functions np.vstack() or np.hstack()) or by creating an empty ar-
ray (using np.array([])) and appending data (using np.append()). Other
Python data structures, such as tuples or lists, can be converted to numpy
arrays as well.

Now let’s go back to our first example and define a new matrix with
dimensions 4× 2:

>>> B = np.random.random((4,2))

>>> B

array([[ 0.19960546, 0.55020058],

[ 0.97162975, 0.53432274],

[ 0.17318349, 0.87559476],

[ 0.94732401, 0.11567287]])

We can multiply the matrices A and B to compute a new matrix C:

>>> C = np.dot(A,B)

>>> C

array([[ 1.44571604, 1.20875634],

[ 1.81889269, 1.72614007],

[ 1.42177835, 0.95449993],

[ 0.99258038, 1.319715 ]])

Note that the operation A * B is not a matrix multiplication, it is an element-
wise multiplication instead. Since A and B are matrices of different dimen-
sions, the operation A * B will result in an error. Multiplying A * A will
result in a matrix A with all elements squared:
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>>> A * A

array([[ 1.75366845e-01, 2.16672731e-01, 5.24031531e-01,

6.85759525e-01],

[ 8.33177858e-01, 3.83572377e-01, 8.05010082e-01,

8.62032724e-01],

[ 4.08552054e-01, 3.13977755e-01, 6.14863745e-02,

5.56684597e-01],

[ 5.82806936e-03, 6.65034499e-01, 9.19614603e-01,

3.98230596e-04]])

Multiplication of several matrices can be performed in one line, e.g. for D =
BTAB we can write:

>>> D = np.dot(B.T, np.dot(A, B))

>>> D

array([[ 3.24238683, 3.33394475],

[ 3.12702581, 2.57578468]])

A more elegant way to perform such a matrix multiplication is to use the
reduce function:

>>> D = reduce(np.dot, (B.T, A, B))

>>> D

array([[ 3.24238683, 3.33394475],

[ 3.12702581, 2.57578468]])

where we used the .T attribute of the numpy array B to generate its trans-
pose. An alternative way to compute the transpose of a matrix is using the
np.transpose() function.

So far, we have performed operations that involve all elements of a numpy
array (e.g., matrix multiplication multiplies all elements of two matrices). To
access a single element of an array, we can simply specify the indices of the
element in square brackets (e.g., A[3,2] or X[1,0,1,0], note that the 0-
counting convention is used). Another very powerful way to access subsets
of elements of a numpy array is to use slicing. As an example, we can use
slicing to print the third row of the matrix A:

>>> A[2,:]

array([ 0.63918077, 0.56033718, 0.24796446, 0.74611299])
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Here, the first index 2 is used to specify the row, while the entry : specifies
that all of the columns need to be accessed. Instead of accessing all columns,
we can request to access only a subset. For example, we can restrict the
range of columns to the second and third columns only:

>>> A[2,1:3]

array([ 0.56033718, 0.24796446])

Slicing can be used to set elements:

>>> A[2,:] = 1.0

>>> A

array([[ 0.41876825, 0.46548118, 0.72390022, 0.82810599],

[ 0.91278577, 0.6193322 , 0.89722354, 0.92845717],

[ 1. , 1. , 1. , 1. ],

[ 0.07634179, 0.81549647, 0.95896538, 0.01995572]])

Alternatively, it can be used to access certain patterns of elements, such as
elements with all even indices

>>> A[::2,::2]

array([[ 0.41876825, 0.72390022],

[ 0.63918077, 0.24796446]])

or all odd indices

>>> A[1::2,1::2]

array([[ 0.6193322 , 0.92845717],

[ 0.81549647, 0.01995572]])

Slicing is not only very powerful, but can also be very computationally effi-
cient. For other ways to access elements of the numpy arrays, please refer to
the Numpy manual.

Finally, we consider how we can manipulate data stored in multi-dimensional
numpy arrays. Much of the Numpy functionality available for the two-
dimensional arrays can be used for the arrays with more dimensions. One
difference is that, since multi-dimensional tensors have more than two in-
dices, the multiplication of two tensors is no longer uniquely defined. For
this reason, we will not use the np.dot() function to compute the product
of two multi-dimensional arrays, but instead consider a more general func-
tion called np.einsum(). [Note that in certain cases the np.dot() function
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can be used to compute the product of two multi-dimensional arrays, see the
Numpy manual]. To illustrate how np.einsum() works, let’s consider the
following tensor operation (so-called tensor contraction) as an example:

Gxyzw =
∑
pq

ExpzqFpyqw , (17)

where we multiply two four-dimensional tensors by summing over the two
common indices to obtain another four-dimensional tensor. Once the tensors
E and F are computed and are stored as four-dimensional numpy arrays, the
tensor contraction in Eq. (17) can be implemented as:

>>> G = np.einsum(‘xpzq,pyqw->xyzw’, E, F)

The first argument of the np.einsum() function specifies how the tensor
operation should be performed: the four indices of tensors E and F are sep-
arated by a comma, while the indices of the third tensor G are separated by
the -> symbol, and the summation is performed over the repeated indices
(so-called Einstein summation). The np.einsum() function is very flexible,
it can perform operations with tensors of arbitrary dimensions (including the
one- and two-dimensional arrays). For example, the norm of the tensor F

(N =
√∑

pqrs F
2
pqrs) can be computed as:

>>> N = np.sqrt(np.einsum(’pqrs,pqrs’, F, F))

While np.einsum() can be used to perform complicated tensor operations in
a compact form, it is less computationally efficient than np.dot(). For this
reason, using np.einsum() is recommended for the initial (pilot) implemen-
tations only, while for the efficient implementations it should be avoided. In
the latter case, it is often possible to reduce the dimensionality of the multi-
dimensional tensors by transposing the indices (using np.transpose()) and
reshaping them down to the two-dimensional arrays (np.reshape()), which
can be multiplied as “super-matrices” using the np.dot() function.

2.2 Defining new functions in Python

Programming computer algorithms often involves performing the same task
multiple times. Such tasks can be conveniently defined as functions, which
can be called in several places of the program. Python makes defining new
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functions very easy. We will illustrate this on a simple example. Let us define
a function that takes a numpy array as an input and returns a list of its three
largest elements. First, we define the function as:

>>> import numpy as np

>>> def max_elements(A):

... # Turn a numpy array into a one-dimensional array

... A = A.ravel()

... # Sort the array in the descending order

... A[::-1].sort()

... # Return first three elements as a Python list

... return A[:3].tolist()

...

We can now use this function to print the three largest elements of a random
matrix:

>>> X = np.random.random((4,4))

>>> print max_elements(X)

[0.9840955434199267, 0.952108251869013, 0.9236377591745225]

>>> X = np.random.random((4,4))

>>> print max_elements(X)

[0.893858566081185, 0.7728361321722338, 0.746132464101978]

>>> X = np.random.random((4,4))

>>> print max_elements(X)

[0.9711829325900079, 0.9198351757368676, 0.8354676131068733]

The function we defined above can also be used for arrays with more than
two dimensions, e.g.:

>>> Y = np.random.random((4,4,4,4))

>>> print max_elements(Y)

[0.990771191307948, 0.98952424412145, 0.982675647370982]

Although this is a very simple example, Python can be used to define more
complicated objects, such as a function with a varying number of arguments
or a recursive function that calls itself multiple times.
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2.3 Obtaining one- and two-electron integrals from Pyscf

Computing the one- and two-electron integrals is always the first step in
quantum chemical simulations. Most of the quantum chemistry programs
already provide the ability to efficiently compute integrals for a specified
basis set and store them in a file or in memory. In this project, we will use
the Pyscf program to generate the one- and two-electron integrals. Pyscf has
many useful features for developing methods in quantum chemistry and is
mostly written using Python, which allows us to use many of its functions
(such as obtaining the integrals or the molecular geometry) directly in a
Python script.

In order to use Pyscf, you will need to download the source code and com-
pile it. Once the compilation is successful, the path to the Pyscf directory
needs to be appended to the PYTHONPATH environment variable. This is im-
portant to be able to use Pyscf as a Python library. For example, if Pyscf is
installed in /home/ays3/codes/pyscf, the /home/ays3/codes/ path needs
to be appended to the PYTHONPATH environment variable. [It is recommended
to update the .bashrc shell script to make sure that PYTHONPATH always con-
tains the path to Pyscf]. To check if your Python is configured to work with
Pyscf, open the Python interpreter and type import pyscf. If importing the
pyscf module does not cause any errors, your Python should be configured
to work with Pyscf.

Now let’s consider an example of how we can use Pyscf to run a SCF
computation for the N2 molecule using the sto-3g basis set. This can be
done using the following input Python script:

# Import modules

import numpy as np

import pyscf.gto

import pyscf.scf

# Specify molecular geometry and basis set

mol = pyscf.gto.M(

verbose = 5,

atom = [

[’N’, (0.0, 0.0, 0.0)],

[’N’, (1.1, 0.0, 0.0)],

],

basis = ’sto-3g’,
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symmetry = True)

# Create an instance of the Restricted Hartree-Fock Python class

mf = pyscf.scf.RHF(mol)

# Specify the level of details that need to be printed

mf.verbose = 4

# Specify the convergence parameter

mf.conv_tol = 1e-10

# Run the SCF computation and obtain the energy

ehf = mf.scf()

# Analyze molecular orbitals

mf.analyze()

Many other examples can be found in the examples directory of the Pyscf
source code.

Pyscf can be used to compute integrals directly without executing the
SCF computation. To do that, we can use the pyscf.gto module as follows:

# Import modules

import numpy as np

import pyscf.gto

# Set options to make Numpy printing more clear

np.set_printoptions(linewidth=150, edgeitems=10, suppress=True)

# Specify molecular geometry and basis set

mol = pyscf.gto.M(

verbose = 5,

atom = [

[’N’, (0.0, 0.0, 0.0)],

[’N’, (1.1, 0.0, 0.0)],

],

basis = ’sto-3g’,

symmetry = True)

# Obtain the number of atomic orbitals in the basis set

nao = mol.nao_nr()

# Obtain the number of electrons

nelec = mol.nelectron
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# Compute nuclear repulsion energy

enuc = mol.energy_nuc()

# Compute overlap integrals

ovlp = mol.intor(’cint1e_ovlp_sph’)

# Compute one-electron kinetic integrals

T = mol.intor(’cint1e_kin_sph’)

# Compute one-electron potential integrals

V = mol.intor(’cint1e_nuc_sph’)

# Compute two-electron repulsion integrals (Chemists’ notation)

v2e = mol.intor(’cint2e_sph’).reshape((nao,)*4)

The computed integrals are stored in the numpy array format. These inte-
grals can be used to implement the algorithm outlined in Section 1.
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