Subgroups

A subgroup of lower order can be formed from a larger group.

Group of order 8, \(G_8^{(2)} \)

<table>
<thead>
<tr>
<th>(G_8^{(2)})</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>G</td>
<td>H</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>A</td>
<td>F</td>
<td>D</td>
<td>H</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>E</td>
<td>A</td>
<td>B</td>
<td>H</td>
<td>G</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>H</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>G</td>
<td>D</td>
<td>H</td>
<td>B</td>
<td>E</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>D</td>
<td>H</td>
<td>F</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>B</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>F</td>
<td>G</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
</tbody>
</table>

The order of any subgroup, \(g \), of a group of order \(h \) must be a divisor of \(h \):

\[
\frac{h}{g} = k, \text{ where } k \text{ is an integer}
\]

For the group \(G_8^{(2)} \), the subgroups are:

- \(g = 1 \) \(\{E\} \)
- \(g = 2 \) \(\{E, B\} \) \(\{E, D\} \) \(\{E, F\} \) \(\{E, G\} \) \(\{E, H\} \)
- \(g = 4 \) \(\{E, A, B, C\} \) \(\{E, B, D, F\} \) \(\{E, B, G, H\} \)
Inverses

\[E^{-1} = E \]
\[A^{-1} = C \]
\[B = B \]
\[C^{-1} = A \]
\[D^{-1} = D \]
\[F^{-1} = F \]
\[G^{-1} = G \]
\[H^{-1} = H \]

Similarity transforms for \(E \):

\[E^{-1}EE = E \]
\[A^{-1}EA = CE\!A = E \]
\[B^{-1}EB = B\!E\!B = E \]
\[C^{-1}E = A\!E\!C = E \]
\[DED = E \]
\[FEF = E \]
\[GEG = E \]
\[HEH = E \]

Class of order 1: \(\{ E \} \)

For \(A \): \(\{ A, C \} \)

\[E^{-1}AE = A \]
\[A^{-1}AA = CAA = CB = A \]
\[B^{-1}AB = BC = A \]
\[C^{-1}AC = AAC = AE = A \]
\[DAD = DG = C \]
\[FAF = FH = C \]
\[GAG = GF = C \]
\[HAH = HD = C \]

For \(B \): \(\{ B \} \)

\[EB\!E = B \]
\[C\!B\!A = CC = B \]
\[B\!B\!B = BE = B \]
\[A\!B\!C = AA = B \]
\[D\!B\!D = DF = B \]
\[FBF = FD = B \]
\[G\!B\!G = GH = B \]
\[H\!BH = HG = B \]

For \(D \): \(\{ D, F \} \)

\[EDE = D \]
\[CDA = CH = F \]
\[BDB = BF = D \]
\[ADC = AG = F \]
\[DDD = DE = D \]
\[FDF = FB = D \]
\[GDG = GC = F \]
\[HDH = HA = F \]

For \(G \): \(\{ G, H \} \)

\[EG\!E = G \]
\[CGA = CD = H \]
\[BGB = BH = G \]
\[AGC = AF = H \]
\[DGD = DA = H \]
\[FGF = FC = H \]
\[GGG = G \]
\[HGH = HB = G \]

Classes:

order 1: \(\{ E \} \) and \(\{ B \} \)

order 2: \(\{ A, C \}, \{ D, F \}, \) and \(\{ G, H \} \)

no classes of order 4.