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Review Notes on Point Groups and Symmetry  
from undergraduate Inorganic Chemistry I course 

 
 
I.  Introduction 

The major difference between organic and inorganic molecules is that organic molecules contain carbon 
and hydrogen atoms.  Inorganic molecules are all compounds that do not contain carbon and hydrogen. 
 
Some points regarding inorganic molecules: 

•  They often contain transition metals 
•  Valence electrons in d-orbitals in transition metals are involved in bonding  
•  s, p, d orbitals can be used in bonding (hybridization)  
•  More bonds and geometries are possible around the central atom compared to bonds around a 
carbon atom 

 
Greater geometric complexity in inorganic molecules (about the central atom) 
 
 
 GEOMETRY 

related
 SYMMETRY 

 
Symmetry plays a role in the physical properties of molecules, such as 

• Bonding- which orbitals interact to form bonds 
• Absorption spectra 

- Energy of transitions (position) 
- Transitions allowed or forbidden (intensity) 

•  Magnetic properties- number of unpaired electrons 
•  Packing of molecules in crystal lattice determines solid state structure and properties 

 
II.  Symmetry of Objects and Molecules 
 
Compare a square to a rectangle.  Which is more symmetrical?   Why? 
 

A 90° rotation from the center about an axis 
perpendicular to the paper leaves cube unchanged, but 
not the rectangular object.  In general, the square has 
more rotations & reflections that leave it unchanged, 
there are not as many for the rectangle.  This makes 
the square more symmetrical than then rectangle. 
 
We need to relate these symmetry attributes to 
molecules. 
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In general, we define 

Symmetry:  invariance to transformation 

Transformation:  movement of molecule (rotation, reflection, etc.) 
 

 For example, compare the rotation of an 
equilateral triangle by 120o with that of a trigonal 
planar molecule, BF3.  When the triangle is 
rotated, no overall change is apparent.  Although 
the F’s were interchanged in BF3, we cannot tell 
because all F’s are equivalent, therefore, if we had 
not numbered the F atoms, we would say that the 
molecule was left unchanged. 
 Therefore, for BF3, a 120° rotation ⊥ to the 
plane of the molecule leaves the molecule 
unchanged.  We say that this transformation is a 
symmetry operation of the BF3 molecule. 

 

Symmetry operation:  a movement of a molecule that leaves the object or molecule unchanged 

Symmetry element:  feature of the molecule that permits a transformation (operation) to be 
executed which leaves the object or molecule unchanged. 

 
Each symmetry operation has a symmetry element associated with it.  The ones will be concerned with 
here are listed below. 
 

Operation Element 
Rotation Axis of rotation 
Reflection Mirror plane 
Inversion Center of inversion 
Improper rotation Axis of improper rotation 

 
The symmetry of a given molecule depends which type and how many operations leave it unchanged.  
Before we go over the symmetry of molecules we will discuss all the operations and their mathematical 
forms (handout on symmetry operations, matrices). 
 
In general, an operation can be thought of as a black box that moves or does something to an object 
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A.  Symmetry Elements and Operations 
 
1. Mirror Plane, Reflection operation (σ) 
 

How many mirror planes are there in H2O?  Total:  2 σ 
 

• 1 σ bisecting the H-O-H bond (⊥ to paper) 
• 1 σ in the plane of the molecule (contains plane of paper) 

 
How about NH3?   Total:  3 σ 

 
 

• 1 σ contains each N-H bond and bisects H-N-H 
 
 

BCl3 (planar molecule)?   Total:  4 σ  
 

 
• 3 σ ⊥ to plane of the molecule along each B-Cl bond 
• 1 σ in the plane of the molecule (contains all atoms) 

 
 

Planar [PtCl4]2–?  Total 5 σ; similar to BCl3 
 
We can describe reflections are mathematically, since they are mathematical operations.  For example, 
using Cartesian coordinates, one can ask where does a point (a,b,c) end up after reflection through xz-
plane? 
 

x

y

z

(2,–1,3)

x

y

z

(2,1,3)

!xz

or !y

 
 
such that 
 
 (2,-1,3)  (2,1,3) 
 
or, in general, 
 
 (a,b,c)  (a,-b,c) 
  

O

H H

N

H H

H

Cl

B

Cl Cl

!xz

or !y

!xz

or !y
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Similarly, 
 
 (a,b,c)  (-a,b,c)  
    
 
 (a,b,c)  (a,b,-c)       
 
Each operation can be written in the form of a matrix.  A 3x3 matrix is required for the transformation of 
an x,y,z point (a,b,c).  For example, using the example above for a reflection through the xz plane, σxz, 
from point P at (a,b,c) to point P´ at (a,-b,c), we can write:  

 P´  = σ xz (P), 

which means that the reflection operation on point P, σxz (P), results in P´.  Since P = (a, b, c) and P´ = 
(a´, b´, c´) =  (a, -b, c), we can write 

 (a´,b´,c´)  = σ xz (a,b,c)  =  (a,-b,c) 

Using matrices we can then write: 
 

1 0 0

0 -1 0

0 0 1

b´

c´

a´

= b

c

a

= -b

c

a

P´ !xz P P´  
 
Similarly, we can write the transformation matrices for σyz and σxy as follows. 
 

-1 0 0

0 1 0

0 0 1

!x  = !yz  =

1 0 0

0 1 0

0 0 -1

!z  = !xy  =

 
 
 
2. Inversion, center of inversion (i) 
 

Inversion operation:  takes a point on a line through the origin to an equal distance on the other side 
 
                  
For a point at x,y,z coordinates (2,-3,-4) inversion would move the point to (-2,3,4), such that 

 i (2,-3,-4)  =  (-2,3,4) 

Therefore, in general, inversion of a point (a,b,c) results in a point at (-a,-b,-c) or 

 i (a,b,c) = (-a,-b,-c) 

!yz

or !x

!xy

or !z
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The transformation matrix for inversion is given by 
 

-1 0 0

0 -1 0

0 0 -1

i  =

 
 
If inversion operation is a symmetry operation of the molecule then we can say that: 
 • the molecule possesses a center of symmetry 

 • the molecule in centrosymmetric 
 
Do the following molecules have centers of inversion? 
 

C

H H

H

H F

B

F F

Cl

Pt ClCl

Cl

2–

M
ClCl

ClCl

Br

Br

Yes Yes No No  
 
 
3. Rotation, Axis of Rotation (Cn) 
 
 Cn = rotation about an axis of n-fold symmetry 
 

Cn (axis of rotation)

!

 
 
An object has axial symmetry if it is invariant to rotation by θ, where n (n = 2π/θ) is an integer. 

 n is the order of rotation 

 θ is the angle of rotation 
 
Convention:  clockwise rotation looking down axis 
 
 Cn

m means doing the Cn operation m times. 
 
 Cn

n takes the molecule back to starting position 
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Rotations in NH3 (top view): 
 

H

N

H H
1

2

3

! = 120o

n = 3

C3

C3

H

N

H H

1

23

C3

H

N

H H
12

3

C3
2

H

N

H H
1

2

3

C3

C3
3

Starting
Point

 
 
 
The general transformation matrix for a Cn rotation about the z-axis is given by 
 

cos(2!/ n) sin(2!/ n) 0

cos(2!/ n) 0

0 0 1

Cn
z  = –sin(2!/ n)

 
 
So for C2 and C4 rotations about the z-axis 
 

cos(!) sin(!) 0

cos(!) 0

0 0 1

C2  = –sin(!) =

-1 0 0

0 -1 0

0 0 1
 

 
cos(!/ 2) sin(!/ 2) 0

cos(!/ 2) 0

0 0 1

C4  = –sin(!/ 2) =

0 1 0

-1 0 0

0 0 1
 

 
 
The general matrices for Cn rotations about the x and  y axes are given by: 
 

cos(2!/ n) sin(2!/ n)

0

cos(2!/ n)

0

0

0

1

Cn
x  =

–sin(2!/ n) cos(2!/ n)

sin(2!/ n)

0

cos(2!/ n) 0

0

0 1Cn
y =

–sin(2!/ n)
 

 
All linear molecules have a C∞ axis along the axis of the molecule.  They can be rotated by an 
infinitesimal angle and remain unchanged. 
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Example:  List the rotational axes and operations present in square planar [PtCl4]2–. 
 

Cl

Pt ClCl

Cl

Axes Operations

C4 ! plane of molecule

2 C2 contain Pt-Cl bonds

2 C2´ bisect Cl-Pt-Cl

C4, C4
2 = C2, C4

3

2 C2

2 C2´

C2

C2

C2´

C2´  
 

4.  Identity Operation: E 
 
 Identity operation leaves a molecule unchanged.   
 
The operation E performed on a Cartesian point (a,b,c) results in (a,b,c).  The matix for E is given by: 
 

1 0 0

0 1 0

0 0 1

E  =

 
 
Various operations performed successively result in placing the molecule in the original position, such 
as one reflection followed by another, inversion followed by inversion, and a Cn rotation performed n 
times, such that 

 σ • σ   =   E 
 i • i   =   E 
 Cn

n
    =   E 

 

5.  Improper Rotation:  Sn  (element= axis of improper rotation) 
 
The improper rotation, Sn, is defined as a rotation (Cn) followed by reflection (σ) through plane 
perpendicular to the Cn axis. 

 
  

P → P´ by Cn,  
P´ → P´´ by σ 
 
Overall, Sn(P) = P´´ 

 
 
 

Sn = Cn × σ  =  σ  ×  Cn  ⇒  the operations commute 

Cn

!

PP´

P´´
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We can multiply the corresponding matrices for rotation (along z-axis) and reflection to arrive at the 
transformation matrix for the Sn operation. 
 

cos(2!/ n) sin(2!/ n) 0

cos(2!/ n) 0

0 0 1

–sin(2!/ n)

1 0 0

0 1 0

0 0 -1

=Sn  =  "xy x Cn  =

 
 

cos(2!/ n) sin(2!/ n) 0

cos(2!/ n) 0

0 0 -1

–sin(2!/ n)=

 
 

Doing the Sn operation m times: 
 
    =  Cn

m  if m = even 
Sn

m   =   Cn
m × σm  = 

  =  Cn
m × σ if m = odd 

                
 
    =  E if m = even 

Sn
n    =    Cn

n × σ   = 
  =  σ if m = odd 
               
 
Example:  S4 rotation and its repetitions on CH4 
 

H

C

H
H

1

2
3

H4

S4

 
 
Looking down the S4 axis (rotating the CH4 molecule so that S4 arrow points at you): 
 

C4 !

H

C HH

H

1

2

3 4

H

C HH

H

12

3

4

H

C HH

H

12

3

4

S4 (single operation)
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Notice that there is a C2 axis coincident with the S4 axis that arises from doing the S4 operation two 
times.  The S4 axis gives rise to the following operations: 
 
     S4,   S4

2 ≡  C2,   S4
3,   S4

4  ≡  E   
 
 
The S2 operation does not exist, since it is equivalent to i 
 

1 0 0

0 1 0

0 0 -1

=S2  =  !xy x C2  =

-1 0 0

0 -1 0

0 0 1

-1 0 0

0 -1 0

0 0 -1

=  i

 
     
Optically active molecules: to be optically active a molecule must NOT possess any Sn symmetry axis.  
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B.  Group Theory 
 
Different molecules have different number and types of operations that leave them unchanged.  Based 
on these differences, we can place molecules into groups. 
 
A group is defined as a collection of operations possessing the following properties: 

1. Closed under multiplication, such that the product of any two operations must result in an 
operation that is also in the group. 

2. Every operation must have an inverse, such that for every operation there must be an operation 
that undoes the effect of the first operation (puts molecule back in starting point). 

  The inverse of matrix A is A–1 (does not mean 1/A) 

  A • A–1   =   A–1 • A   =   E  

3.  Every group must have an identity operation, E. 

4. All operations of the group are associative, such that 

  ABC  =  (AB)C  =  A(BC) 

 In other words, the multiplication of A and B first followed by multiplication by C should yield the 
same result as multiplying A by the product of B and C.  

 
The symmetry operations of molecules form groups known as Point Groups (since there is always one 
point in the molecule that does not move when operations are performed). 
 
 
Products of Operations 

Before we continue the discussion of point groups, or groups in general, we need to know how to 
multiply symmetry operations. 
 
The multiplication of A and B to yield C is given by 

 A • B =  C 

If the operations are being performed on a molecule or point P, we can write 

 A • B (P) =  C (P), 

where C is the result of performing operation B on point P first, and then doing operation A on the 
result.  When operations are multipled, always perform the operations in the order from right to left. 
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The result of a product of operations can be determined graphically or mathematically.  Both methods 
will be used to solve the example below.  You can choose to use either method, just make sure that you 
know how to arrive at the correct answer. 
 
 
Example:  Consider the product of C2

x and C2
y, where C2

x represents a C2 rotation about the x-axis and 
C2

y a C2 rotation about the y-axis.  Is there a single operation that equals the product?  What is it?  Do 
the operations commute? 
 
First we will solve the problem graphically.  To do this, draw the x- and y-axes on the plane of the paper 
and the z-axis coming out of page towards you.  In addition, closed (filled) circles will denote a point 
positioned above xy-plane (positive z value) and open circles will be used for points below xy-plane 
(negative z values).  Place a point, P, on the graph, placing closer to one axis than the other (this is an 
important point), as shown below. 
 

x

y

P

P´
P´´

P´´´

 
 
We will write the multiplication of the operations as  

C2
y  C2

x (P) = C2
y (P´) = P´´ 

where performing a C2
x rotation on point P first results in point P´, followed by a C2

y rotation on point 
P´ to yield the result, P´´.  If the operations commute, then doing them in reverse order should give the 
same result.  It can be shown graphically that performing C2y first on point P results in point P´´´.  
When C2

x is performed on P´´´, the result is P´´.   

C2
x   C2

y (P) = C2
x (P´´´) = P´´ 

The question that remains is what single operation can take the point P to P´´.  This operation is then the 
result of the multiplication of C2

x and C2
y.  From inspection of the figure above, once can deduce that 

the operation C2
z is the answer, such that 

C2
z (P)  =  P´´ 

and, therefore, 

C2
y  C2

x  =  C2
x   C2

y  =  C2
z 
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C4 • σxz (P) = C4 (P´) = P´´ 
 
Do the operations commute?  No, because 
 
σxz • C4 (P) =  σxz (P´´´) = P”” 
 

To ensure that one indeed has arrived at the correct answer, it is good to repeat the exercise with a new 
point, P1, starting at a different place in the graph.  If C2

z is indeed the result of the product, then C2
z 

(P1) = P1´´ and C2
z (P) = P´´. 

 
 
The same solution for the multiplication can be obtained mathematically using the transformation 
properties of a Cartesian point P, where P = (a,b,c).  We know that 

C2
z (a,b,c)   =   (-a,-b,c) 

C2
y (a,b,c)   =   (-a,b,-c) 

C2
x (a,b,c)   =   (a,-b,-c) 

Therefore 

C2
y C2

x (a,b,c)  =  C2
y (a,-b,-c)  =  (-a,-b,c) 

or 

C2
y C2

x (a,b,c)  =  C2
z (a,b,c)  =  (-a,-b,c) 

One can also multiply the transformation matrices for C2
x and C2

y.  The resulting matrix will be the 
transformation matrix for C2

z. 
 
 
Example:  What is the result of C4 • σxz?  Do the operations commute? 
 

 
 

 
 

 
 
 
 
 
From inspection, the single operation for C4 • σxz that takes P to P´´ is a reflection through a plane that 
contains the z-axis and the line x=-y, σx=-y, such that 

 C4 • σxz  =   σx=-y
 

In order to ensure this is correct, one can choose another point P1, such as (4,2,3) as a test.  Performing 
the multiplication graphically, C4 • σxz (4,2,3) = (-2,-4,3).  Again graphically as shown below, one can 
make sure that indeed σx=-y (4,2,3) = (-2,-4,3) =  P1´´ and that σx=-y (P) = P´´. 
 

 

x

y

P

P´

P´´
P´´´

P""



13 

 
In general,  

C4 • σxz (a, b, c)  = C4 (a, -b, c)  =  (-b, -a, c) 

and 

σx=-y (a, b, c)  =  (-b, -a, c) 

 
 
Using the corresponding transformation matrices one can arrive at the answer mathematically as shown 
below. 

C4 • !xz = =

0 1 0

-1 0 0

0 0 1

1 0 0

0 -1 0

0 0 1

0 -1 0

-1 0 0

0 0 1

= !x = -y

 
 
Use the resulting matrix as operation on a point (a, b, c) to arrive at the transformed point (-b, -a, c) 
 

0 -1 0

-1 0 0

0 0 1

b

c

a

= -a

c

-b

 
 
Do the operations commute?  No, since the resulting matrix is different, as shown below. 
 

!xz • C4  = =

0 1 0

-1 0 0

0 0 1

1 0 0

0 -1 0

0 0 1

0 1 0

1 0 0

0 0 1
 

 
Usually, most multiplication problems can be solved graphically. 
 
 
Constructing groups 
If a molecule has a C2

x axis and a C2
y axis as symmetry elements (as operations), then both of these 

operations must belong to a group.  But these two operations are unlikely to be the only two operations 
in the group.  We can use the properties of groups defined earlier to arrive at all the other operations of a 
group.   
 
To identify other elements in the group:  

x

y

P

P1

P´´

P1´´

!x = -y
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(1) The identify element, E, must be an operation of the group.  All groups have E. 

(2) Since closure under multiplication is a property of all groups, one can arrive at all the operations 
of the group by multiplying all elements known.  The result of each multiplication must also be 
an element of the group. 

 
The easiest way to arrive at all the operations of the group is to construct a group multiplication table.  
We start with the three elements we know on the top and left side, E, C2

x, and C2
y.  The identity 

element, E, is always listed first on the table.  Elements in the multiplication table are multiplied always 
in the same order, (column) x (row).  All elements multiplied by E result in the element itself, therefore, 
the first column and first row yield the original elements as shown below. 
 
   

 E C2
x C2

y 
E E C2

x C2
y 

C2
x C2

x   
C2

y C2
y   

 
In addition, we know that C2

x•C2
x = E and C2

y•C2
y = E, so we can add that result in the box where the 

corresponding column and row intersect.  From the example earlier, we also know that C2
x•C2

y = 
C2

y•C2
x = C2

z.  This result is added in red in the table below. 
   

 E C2
x C2

y 
E E C2

x C2
y 

C2
x C2

x E C2
z 

C2
y C2

y C2
z E 

 
Since C2

z is an operation that was not on the original multiplication table, it needs to be added to the top 
and left columns, as shown in blue below.  This operation now needs to be multiplied with all the others 
in the group, shown in red, to ensure that it does not give rise to any additional operations.  Since this is 
indeed the case, then the multiplication table below represents a complete group. 
 

 E C2
x C2

y C2
z 

E E C2
x C2

y C2
z 

C2
x C2

x E C2
z C2

y 
C2

y C2
y C2

z E C2
x 

C2
z C2

z C2
y C2

x E 
 
Once one finishes completing the table, one should check that all the properties of a group are obeyed.  
For example, make sure that each element has an inverse.  In this example, each element is its own 
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C

F Br

Cl

H

 
 

inverse, but this is not necessarily the case in other groups.  By constructing the multiplication table, we 
have shown closure under multiplication, and we have included the identity element in the group. 
 
The group in the multiplication table is one with elements 

[ E , C2
x , C2

y , C2
z ]  

Each point group has a specific set of operations (or elements) associated with it, and each group has a 
name.  As you will see in the next section, the point group with the elements above is D2.  Therefore, a 
molecule that belongs to the D2 point group will have E, C2

x, C2
y, and C2

z as operations that leave it 
unchanged.  In such molecule, no other operations will be present.  The common point groups and the 
operations associated with each point group will be discussed in the next section. 
 
 
 
C.  Symmetry Point Groups 

Point symmetry: the symmetry of a molecule with respect to reflection, inversion, rotation, and         
improper rotation. 

Point group: collection of symmetry operations that arise because of the existence of symmetry 
elements in a molecule. 

 
 
Point Groups and Their Operations 
The common point groups and the operations associated with each group are listed below. 
 (1)  Point groups with very low symmetry; no rotational axis in the molecule. 
     

(a)  C1.  If a molecule has only the identity operation, E, and no other 
operations present, then the molecule belongs to the point group C1.  
An example is shown on the right. 

 

      (b) Cs.  If the only operations in the molecules are a mirror plane and E, then its point group is Cs.  
Two examples are shown below. 

C

H F
Cl

H

! contains C,F,Cl

N

Cl H
H

! bisects H-N-H and

contains N-Cl bond  

 
(c) Ci.  If the molecule only has the inversion operation, i, and E, then point group of the molecule is 

Ci.  One example is 1,2-dibromo-1,2-difluoroethane in the staggered conformation shown below.  
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The Newman projection of the molecule is also shown for clarity.  The center of inversion of the 
molecule is located at the center of the C-C bond. 

C

H

F
Br

C

H

F
Br

H

Br F

Br

H

F

 
 
 
(2)  Rotational Point Groups:  Cn, Cnh, and Cnv 
 

(a)  Cn.  The only operations in the Cn point groups are Cn (and its repetition) and E. 
 

The Cn point groups have a total of n operations: Cn, Cn
2, Cn

3, ... Cn
n  = E  

 
Examples of molecules that belong to the C2 and C3 point groups are shown below.  Please note 
that there no other operations present in these molecules, such as mirror planes or inversion. 

O

H

O

H

C2

O

N
OO

H

H

H
C3 point groupC2 point group  

 
      (b)   Cnh.  This group has the operations of the Cn group with the addition of a horizontal mirror 

plane, σh, perpendicular to the Cn axis.   
 

Operations of the Cnh point groups: 
 
 If n = even:  Cn and its repetitions, σh, i, various Sn 
 
 If n = odd:  E, Cn and its repetitions, σh, various Sn 

 

We always consider the Cn axis “vertical”, and horizontal mirror planes are always 
perpendicular to the Cn axis (or the Cn axis of highest order). 

 
Planar trans-HOOH is an example of a molecule that belongs to the C2h point group.  There is 
a C2 axis perpendicular to the plane of the molecule and a mirror plane on the plane of the 
molecule.  Additional operations present are i and E. 

 
Similarly, planar B(OH)3 belongs to the C3h point group. 
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O

B

O O

O O

H

H
C2h

H

H

H

C3h  
 
      (c) Cnv : This group has the operations of the Cn group with the addition of vertical mirror planes, 

σv (these are mirror planes that contain the Cn axis). 

 • The mirror plane σv is reproduced n times in the Cnv point group 

 • The operations of the Cnv point group are:  E, Cn and its repetitions, n σv  

 • Cnv point groups have a total of 2n operations 
 

Some examples of molecules that belong to the Cnv point groups are shown below. 
 

H

O

H H

N

H
H

H

C

H
H

Cl

C3vC2v C3v

M

C5v  
 
 
(3)  Dihedral point groups:  Dn, Dnh, Dnd 

(a) Dn:  formed by the addition of a C2 axis perpendicular to the Cn axis in the Cn point group 
           These point groups are not very common, since there are no mirror planes or inversion center. 

• There are n C2 axes perpendicular to the Cn axis 

• There are a total of 2 n operations in the Dn point group 
 

 
An example of a molecule that belongs to the D3 point group 
is shown on the left, with a trigonal planar central B atom and 
three phenyl rings at 45o from the of the plane of the central 
atom.  A C3 axis is present from the central B atom, 
perpendicular to the trigonal plane defined around the central 
atom.  C2 axes are present perpendicular to the C3 axis. 

 
 
       

B C2

C2

C2
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(b)  Dnh: Formed by the addition of σh to the Dn point group (where σh  ⊥ Cn axis).  This is a very 

common point group.  The Dnh point groups also have n σv mirror planes that contain both 
the Cn and C2 axes, where an n number of C2 axes are present in the group). 

 
Operations:  Cn and its repetitions, n C2’s, σh, n σv’s , i (if n is even), various Sn 
Total number of operations = 4n 
 
An example of a molecule that belongs to the D3h point group is eclipsed ethane.  As shown 
on the left, eclipsed ethane has a C3 axis that contains the C-C bond and three C2 axes 

perpendicular to C3 with origin at the center 
of the molecule.  A horizontal mirror plane, 
σh, is present, which contains all three C2 
axes and is perpendicular to the C3 axis.  In 
addition, vertical mirror planes, σv’s, which 
contain both the C3 axis and each C2 axis 
are found. 

 
Eclipsed ferrocene, shown below, is similar to eclipsed ethane.  Eclipsed ferrocene belongs to 
the D5h point group.  Benzene, with a C6 axis, 6 C2 axes perpendicular to C6, and a σh 
mirror plane, belongs to the D6h point group. 

Fe
C2

C5 C2 C2

C2

C2

C2

Fe

C2 C2

C2

C2

C2

C2  
 
(c) Dnd: Formed by the addition of dihedral mirror planes, σv, to the Dn point group.  There are n σv 

mirror planes that contain the Cn axis and bisect adjacent C2 axes.  This point group is quite 
common.  The most identifiable difference between the Dnh and Dnd point groups is that Dnh 
has a σh mirror plane and Dnd does not. 

 
Operations:  Cn and its repetitions, n C2’s , n σd’s, i (if n is odd), various Sn 

 
An example of a molecule that belongs to the D3d point group is staggered ethane.  As shown 
below, staggered ethane has a C3 axis that contains the C-C bond, however, it does not have 
a horizontal mirror plane perpendicular to the C3 axis.  The molecule has three C2 axes that 
are perpendicular to C3; these axes cross the center of the C-C bond.  In addition, three 
dihedral mirror planes, σd, that contain C3 but bisect adjacent C2 axes are present. In 

H

C

H
H

H

C

H
H

C2
C2, !v

C2, !vC2, !v

C3
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addition, the molecule has a center of inversion, i, and an S6 axis overlapping with the C3 
axis. 
 
In a manner similar to staggered ethane, staggered ferrocene belongs to the D5d point group.  
Some of the operations of staggered ferrocene are shown below.  

H

C

H
H

H

C

H
H

C3, S6

C2 C2

C2

C2

C2Fe

!d

!d

!d

C2

C2

C2

Staggered ethane, D3d

Fe C2

C5 !d

!d

!d

!d

Staggered ferrocene, D5d  
 
 
(4) Linear point groups:  C∞v, D∞h 
 

All linear molecules have a C∞ axis that contains all the atoms in the molecules and an infinite 
number of σv planes that contain the C∞ axis 

 
 C∞v  : no C2 axis ⊥ to C∞ or σh mirror plane (⊥ to C∞)  

Operations:  C∞, ∞ σv’s 
 

C O C! C NH C! 
 

 D∞h: C2 axis ⊥ to C∞ and σh mirror plane ⊥ to C∞  
Operations:  C∞, ∞ σv’s, σh, ∞ C2’s, i 

 

C O C! C CH C!O

C2

H

C2

  
 
 
(5) The Sn groups.  These point groups are very uncommon, since they only have the Sn operation and 

its repetitions. 

 Operations:  Sn, Sn
2, ... Sn

n = E 

 There are a total of n operations in an Sn point group. 
 
 Example: 1,3,5,7-tetramethylcytoclooctatetraene  
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C2, S4

C3

B

B
A

B
B

C3

 

S4

1

2

3

4

S4

1

2

3

4

S4
2
 =C2

1

2

3

4

S4

S4
3

1

2

3

4

S4

 

 In this example, the methyl groups are numbered to show the effect of sequential rotations about 
the S4 axis.  An important point is that the C2 axis in the molecule derives from the presence of 
S4

2.  This molecule belongs to the S4 point group, with operations S4, S4
2 = C2, S4

3, and E. 
 
 
(6) Very high symmetry point groups:  Td, Oh, Ih 

These groups are characterized by more than one axis of n ≥ 3 and are contain of the cubic and 
icosahedarl groups.  In these groups all vertices, edges, and faces are equivalent. 

 
      (a)  Tetrahedral point group: Td.  Example:  CH4 

C3, C3
2 down each A—B: 8 operations 

C2 bisecting B—A—B: 3 operations  
S4, S4

3 along same:  6 operations 
σd’s through opposite edges: 6 operations 
E:   1 operation 
   TOTAL:        24 operations 
 
 

 
(b)  Octahedral point group:  Oh.  Example:  PF6

–  

B
A

BB

B

B

B
B

A
BB

B

B

B

C3, S6

C3 axis perpendicular
to the center of the 
triangular BBB face

B

B

B

B

B

B
A

Looking down
C3 axis

Octahedral
molecule placed
inside cube

C4, S4

 

Operations: 
C3, C3

2 through each BBB face (through corners of cube):  8 operations 
C2 bisecting B—A—B (through opposite edges of cube):  6 operations 
C4, C4

2 ≡ C2, C4
3 down each BAB bond (through faces of cube): 9 operations 

plus i, 6 S4, 8 S6, 3σh, 6 σd, and E 25 operations 

 TOTAL:  48 operations 
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(c) Icosahedral point group:  Ih (120 operations total)   

 

Icosahedron:  12 vertices, faces:  20 equilateral triangles (B12H12
2–) 

 

 
 

Dodecahedron:  20 vertices, faces 12 regular pentagons 
  
 
 
Determination of Point Groups 
In the discussion of point groups above, all groups were listed and examples were provided.  However, 
usually the situation is in reverse, such that one is given a molecule and one needs to assign a point 
group to it.  So, how does one determine the point group of a molecule?  One can follow the simplified 
flowchart on the right.  A more complete chart can be found in your book.  In general, it is first 
important to determine whether the molecule has a 
rotational axis, Cn.  If it does not, then it must belong 
to one of the very low symmetry point groups, C1, 
Cs, or Ci.  If does possess a Cn rotational axis, one 
must determine if molecule is linear; if so, then its 
symmetry point group must be either C∞v or D∞h.  If 
the molecule is not linear and does not possess any 
rotational axes other than Cn, then it must belong to 
one of the rotational point groups, Cn, Cnv, Cnh, or 
Sn.  However, if the molecules has C2 axes 
perpendicular to Cn, then its symmetry point group is 
dihedral, either Dn, Dnh, or Dnd.  If rotational axes, 
Cn, with n ≥ 3 are present in addition to the original 
Cn axis, then the molecule belongs to one of the very 
high symmetry point groups, Td, Oh, or Ih.  Within 
each class of groups, other operations present, such 
as mirror planes, determine which particular point 
group the molecule belongs to.  For example, in the 
rotational groups, Cn, Cnv, and Cnh, the presence of a Cn axis and a σh mirror plane (in the absence of 
any other rotational axes) places the molecule in the Cnh point group.  Similarly, the presence of a Cn 
and σv’s (only) makes the molecule of Cnv symmetry. 

 

Cn axis?
No

C1, Cs, Ci

Yes

Linear?
Yes

C!v, D!h

No

Other rotational
axis present?

No
Cn, Cnv, Cnh , Sn

Yes

Is n ! 3 of the
other Cn axis?

No
Dn, Dnh, Dnd

Yes

Td, Oh, Ih
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D.  Introduction to Representations  
 
The symmetry of molecules is important in bonding, since only orbitals of the same symmetry are able 
to interact (or mix) to form bonds.  Therefore, in order to know if two orbitals can combine to form a 
bond, one needs to be able to determine the symmetry of orbitals within molecules.  Keep in mind that 
each molecule belongs to a point group and that the point group has a certain set of operations 
associatedwith it.  In order to determine the symmetry of an orbital, one must follow what happens to 
each orbital in question when the operations of the group are performed on it. 
 
For example, consider a H2O molecule, which belong to the C2v point group.  In the C2v point group, 
the operations present are: 

 C2v:  {E, C2, σx, σy} 

Recall that σx = σyz and σy = σxz, mirror planes containing the yz-plane and xz-plane, respectively.  
Consider then the valence orbitals on the oxygen atom, the 2s and 2p orbitals using the coordinate 
system defined below. 

H

O

H

z

x
s pz

px
py  

 
Recall the orbitals are mathematical functions and that the shaded are non-shaded portions of the orbitals 
represent positive and negative parts of the function.  In order to assing symmetry to orbitals, the 
question that must be asked is what happens to each of these orbitals as we perform the operations of the 
group (the point group of the molecule).  In order to do this, we construct a table with the operations of 
the group along the top as shown below.  Starting with the px orbital, we write “px” on the left side of 
the first row of the table.  As shown below, performing each operation of the C2v point group on px 
results either in the same function (unchanged, px) or the negative of the function (-px).  These are 
entered on the table below. 
 
                 

 E C2
z σx (σyz) σy(σxz) 

px px - px - px px 
 

px

E

px px

C2

C2

px

!x

-px px px

!y

-px

z

x

y
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Similarly, the procedure is repeated for the py, pz, and s orbitals and the results are entered on the table 
as shown below. 
 

 E C2
z σx (σyz) σy(σxz) 

px px - px - px   px 
py py - py   py - py 
pz pz   pz   pz   pz 
s s  s  s  s 

 
Since the resulting functions are either themselves or their negative, we simply use the coefficients, as 
shown in the table below. 
 

 E C2
z σx (σyz) σy(σxz) 

px 1 - 1 - 1   1 
py 1 - 1   1 - 1 
pz 1   1   1   1 
s 1   1   1   1 

 
 

These coefficients represent the trasnformation properties for a given orbital within a particular point 
group.  Because the pz and s orbitals have all the same coefficients, they transform the same under 
the operations of the C2v point group.  The transformation properties (set of coefficients ) define a 
representation. 

 
Therefore, in the example above, 
 px and py belong to two different representations 
 pz and s belong to a third representation 
 
A fundamental rule of representations is that two functions, operators, etc. cannot interact (mix) if they 
belong to different representations.  Such interactions are symmetry forbidden.  Mixing can only occur if 
two (or more) functions, operators, etc. belong to the same representation or if there is another element 
the helps mixing.  The latter point will be discussed in more detail a later time.  
 
Representations have labels.  These labels are used to indicate the symmetry of different representations, 
therefore, if representations with different coefficients must have different labels.  Here some of the 
most common labels will be summarized.  Please keep in mind that as the point groups become more 
symmetric, additional subscripts are necessary to differentiate among representations.  This labeling is 
beyond the scope of the present discussion.  
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The major label of a representation is a capital letter.  This letter is associated with the number under the 
identity operation in the representation. 
 

A or B:  These labels are used for singly degenerate representations, where there is a 1 under the 
identity operation, E.  This means that only one object is transformed.  Which label is used is 
determined by whether the Cn operation yields a +1 or –1 as follows. 

   A if Cn operation yields +1 

   B if Cn operations yields –1 
 

E:  This label is used to denote doubly degenerate representations, where two equivalent objects 
must be transformed together, resulting in a 2 under the identity operation.  An example is the x 
and y axis is D4h symmetry.  An example will be shown below. 
 
T:  This letter is used to denote triply degenerate representations, where three equivalent objects 
are transformed together.  This results in a 3 under the E operation.  An example are the three p 
orbitals, px, py, and pz, in the Oh point group.     

 
 
In addition to the capital letters, usually subscripts are necessary to further differentiate among 
representations.  Only the subscripts “1” and “2” and “g” and “u” will be discussed here.  Additional 
subcripts or labels are beyond the scope of this discussion. 
  
 Subscripts “1” and “2” are used as follows: 

  1 is used if (C2 ⊥ Cn) or σv ⊥ to plane of molecule yield +1 

  2 is used if (C2 ⊥ Cn) or σv ⊥ to plane of molecule yield –1 
 

Subscripts “g” and “u” are always used if there is a center of inversion in addition to any other 
subscripts  

  g is used if the object is symmetric with respect to inversion (i yields +1) 

  u is used if the object is not symmetric with respect to inversion (i yields –1) 
 
In the H2O example all the representations are singly degenerate, therefore, all letter labels must be 
either “A” or “B”.  In this example, there is no C2 axis perpendicular to the main Cn axis, which in this 
case is C2.  Therefore, the mirror plane perpendicular to the plane of the molecule, σx, is used to 
determine whether a representation will hava an “A” or “B” label.  The representations for the pz and s 
orbitals, with a +1 under the σx operation, are both of “A” symmetry, whereas the symmetries of the px 
and py orbitals are “B”.  However, additional subscripts are necessary in order to differentiate among the 
representations for px and py, since both of them are “B”.  The labels are shown in the table below. 
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 E C2
z σx (σyz) σy(σxz) Label 

px 1 - 1 - 1   1 B2 
py 1 - 1   1 - 1 B1 
pz 1   1   1   1 A1 
s 1   1   1   1 A1 

 
 
In the example above we can say that the px orbital has B2 symmetry and that is a b2 orbital.  Similarly, 
the py orbital has B1 symmetry and is a b1 orbital.  Both the pz and s orbitals have A1 symmetry and are 
a1 orbitals.  It is important to note that orbitals are written in lower cases, whereas the symmetry is 
expressed in upper case. 
 
 
As mentioned above, some orbitals (or functions) transform together in certain point groups.  The px and 
py orbitals in the D4h point group will be used as an 
example of orbitals that transform together.  The px and 
py orbitals are drawn on the right, showing that a C4 
rotation, an operation of the D4h point group, exchanges 
the functions.  This means that a C4 rotation on px results 
in ±py, and C4 on py results on ±px.  Therefore, unlike the 
example with the H2O molecule above, there is at least 
one operation in the group that exchanges the two orbital 
functions.  This is the reason why the two cannot be 
separated and must be treated together.  When this 
happens, a “2” must be entered under the identity 
operation.  
 

The table with the operations of the D4h point group is shown below.  In the first row, the px and py 
orbitals are treated together.  Whenever an operation exchanges or mixes two functions, a “0” is entered 
under that operation.  For all other operations, the sum of what happens to each orbital is added.  For 
example, the C2

z operation on px results on -px, or -1.  Since the C2
z operation on py also results on -1, 

then the sum of the two is -2, which is entered in the table.  The same results is obtained for i.   
 

D4h E 2C4
z C2

z 2C2´ 2C2 ´´ i 2S4 σh 2σv 2σv´  

px and py 2 0 -2 0 0 -2 0 2 0 0 Eu 
dxy 1 -1 1 -1 1 1 -1 1 -1 1 B2g 

dyx and dxz 2 0 -2 0 0 +2 0 -2 0 0 Eg 
 
 
 

x

y

x

y

C4

C4

x

y

x

y

px

±px

±py

py
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The σh operation results in +1 for both px and py, for a total of 2.  The S4, C2´´, and σv´ operations 
exchange the functions of px and py, thus resulting in a zero.  The C2´ operation along one of the axis, 
for example the x-axis, will result in a +1 for px and a –1 for py, therefore the sum is a zero.  The same 
occurs for the σv operation.  Because there is a “2” under E and under inversion there is a negative 
number, the symmetry label (on the far right of the table) is Eu. 
 
The dxy orbital can be treated alone in the D4h point group, since none of the operations of the group 
exchange its function with any other orbtital.  Therefore, a “1” is placed under E and all operations of 
the group result in either +1 or –1.  The –1 under C4 results in a B symmetry label, and the –1 under C2´ 
results in the subscript “2”.  Since there is a +1 under i, then the symmetry label for this representation is 
B2g.  
 
As in the case of the px and py orbitals, the dxz and dyz orbitals transform together in the D4h point 
group as shown in the table.  The result is a representation with Eg symmetry. 
  
 


