Chemistry 6330 Problem Set 4 Answers

(1) (a) BF_4 tetrahedral (T_d)

T_d	E	$8C_3$	$3C_2$	6S ₄	$6\sigma_{\sf d}$
Γ_{xyz}	3	0	-1	-1	1
$\Gamma_{ ext{unmoved atoms}}$	5	2	1	1	3
Γ_{total}	15	0	-1	-1	3

If we reduce Γ_{total} we find that:

$$\Gamma_{\text{total}} = A_1 + E + T_1 + 3T_2$$

Looking at the character table, we can see that:

$$\Gamma_{\text{rotational}} = T_1$$

and

$$\Gamma_{\text{translational}} = \mathsf{T}_2$$

therefore,

$$\Gamma_{\text{vibrational}} = A_1 + E + 2T_2$$

By inspection of the character table, the $2T_2$ modes are IR active and A_1 , E, and $2T_2$ modes are Raman active.

(b) CINO bent (C_s)

C_s	E	σ_{h}
Γ_{xyz}	3	1
$\Gamma_{\sf unmoved\ atoms}$	3	3
Γ_{total}	9	3

$$\Gamma_{\text{total}}$$
 = 6A' + 3A''

$$\Gamma_{\text{rotational}} = A' + 2A''$$

$$\Gamma_{\text{translational}} = 2A' + A''$$

therefore,

$$\Gamma_{\text{vibrational}} = 3A'$$

IR active: 3A' Raman active: 3A'

(c) XeO₃ trigonal pyramid (C_{3v})

C_{3v}	E	2C ₃	$3\sigma_{v}$
Γ_{xyz}	3	0	1
$\Gamma_{ ext{unmoved atoms}}$	4	1	2
Γ_{total}	12	0	2

$$\Gamma_{\text{total}} = 3A_1 + A_2 + 4E$$

$$\Gamma_{\text{rotational}} = A_2 + E$$

$$\Gamma_{\text{translational}} = A_2 + E$$

therefore,

$$\Gamma_{\text{vibrational}} = 2A_1 + 2E$$

IR active: $2A_1 + 2E$ Raman active: $2A_1 + 2E$

(d) CIF₃ t-shaped (C_{2v})

C_{2v}	E	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$
Γ_{xyz}	3	-1	1	1
$\Gamma_{\sf unmoved\ atoms}$	4	2	2	4
Γ_{total}	12	-2	2	4

$$\Gamma_{\text{total}} = 4A_1 + A_2 + 3B_1 + 4B_2$$

$$\Gamma_{\text{rotational}} = A_2 + B_1 + B_2$$

$$\Gamma_{\text{translational}} = A_1 + B_1 + B_2$$

therefore,

$$\Gamma_{\text{vibrational}} = 3A_1 + B_1 + 2B_2$$

IR active: $3A_1 + B_1 + 2B_2$ Raman active: $3A_1 + B_1 + 2B_2$

(e) SF_4 see-saw (C_{2v})

C_{2v}	E	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$
Γ_{xyz}	3	-1	1	1
$\Gamma_{\sf unmoved\ atoms}$	5	1	3	3
Γ_{total}	15	-1	3	3

$$\Gamma_{\text{total}} = 5A_1 + 2A_2 + 4B_1 + 4B_2$$

$$\Gamma_{\text{rotational}} = A_2 + B_1 + B_2$$

$$\Gamma_{\text{translational}} = A_1 + B_1 + B_2$$

therefore,

$$\Gamma_{\text{vibrational}}$$
 = 4A₁ + A₂ + 2B₁ + 2B₂

IR active: $4A_1 + 2B_1 + 2B_2$ Raman active: $4A_1 + A_2 + 2B_1 + 2B_2$

(2) (a)

Axes oriented such that z-axis goes through O-Xe-O bond and x-axis is through Xe, perpendicular to the plane of the molecule

D_{2h}	Е	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	σ(xy)	$\sigma(xz)$	σ(yz)
Γ_{xyz}	3	-1	-1	-1	-3	1	1	1
$\Gamma_{ ext{unmoved atoms}}$	5	3	3	1	1	3	3	5
Γ_{total}	15	-3	-3	-1	-3	3	3	5

$$\Gamma_{\text{total}}$$
 = 2A_g + B_{1g} + B_{2g} + 2B_{3g} + 3B_{1u} + 3B_{2u} + 3B_{3u}

$$\Gamma_{\text{rotational}}$$
 = B_{1g} + B_{2g} + B_{3g}

$$\Gamma_{\text{translational}} = B_{1u} + B_{2u} + B_{3u}$$

therefore,

$$\Gamma_{\text{vibrational}}$$
 = 2A_g + B_{3g} + 2B_{1u} + 2B_{2u} + 2B_{3u}

- (b) IR active: $2B_{1u} + 2B_{2u} + 2B_{3u}$ Raman active: $2A_g + B_{3g}$
- (c) To solve this problem we need to look at what happens to A_1 , E and T_2 when lowering the symmetry from T_d to $C_{2\nu}$:

$$\begin{array}{cccc} T_d & \longrightarrow & C_{2v} \\ \hline A_1 & \longrightarrow & A_1 \\ E & \longrightarrow & A_1 + A_2 \\ T_2 & \longrightarrow & A_1 + B_1 + B_2 \\ \end{array}$$

The normal modes for this molecule are: $4A_1 + A_2 + 2B_1 + 2B_2$

- (d) IR active: $4A_1 + 2B_1 + 2B_2$ Raman active: $4A_1 + A_2 + 2B_1 + 2B_2$
- (e) There are several possible answers to this question:
 - (i) Neither structure is correct since neither has the correct number of IR bands.
 - (ii) Structure I, which gives 8 possible IR bands, is correct and one of the stretches is too weak to be seen or lies under another band.

Axes oriented such that z-axis goes through the two N-atoms, y-axis goes through the two S-atoms and x axis is perpendicular to the plane of the molecule.

D_{2h}	E	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	σ(xy)	σ(xz)	σ(yz)
Γ_{xyz}	3	-1	-1	-1	-3	1	1	1
$\Gamma_{ ext{unmoved atoms}}$	4	2	2	0	0	2	2	4
Γ_{total}	12	-2	-2	0	0	2	2	4

$$\Gamma_{\text{total}}$$
 = 2A_g + B_{1g} + B_{2g} + 2B_{3g} + 2B_{1u} + 2B_{2u} + 2B_{3u}

$$\Gamma_{\text{rotational}} = B_{1g} + B_{2g} + B_{3g}$$

$$\Gamma_{\text{translational}} = B_{1u} + B_{2u} + B_{3u}$$

therefore,

$$\Gamma_{\text{vibrational}}$$
 = 2A_g + B_{3g} + B_{1u} + B_{2u} + B_{3u}

IR active: $B_{1u} + B_{2u} + B_{3u}$ Raman active: $2A_g + B_{3g}$

C_{2v} symmetry

C_{2v}	Е	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$
Γ_{xyz}	3	-1	1	1
$\Gamma_{\sf unmoved\ atoms}$	4	0	2	2
Γ_{total}	12	0	2	2

$$\Gamma_{\text{total}} = 4A_1 + 2A_2 + 3B_1 + 3B_2$$

$$\Gamma_{\text{rotational}} = A_2 + B_1 + B_2$$

$$\Gamma_{\text{translational}} = A_1 + B_1 + B_2$$

therefore,

$$\Gamma_{\text{vibrational}} = 3A_1 + A_2 + B_1 + B_2$$

IR active: $3A_1 + B_1 + B_2$ Raman active: $3A_1 + A_2 + B_1 + B_2$

If structure A is correct, the IR and Raman spectra should each have only three bands. If either, or both of the spectra contain more than three bands, this would indicate Structure B is correct.

(4) Assume the molecule lies in the yz plane, with the z-axis going through the C-C bond, the x-axis perpendicular to the plane of the molecule and the y-axis pointing down.

(a)

D_{2h}	Е	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	σ(xy)	$\sigma(xz)$	σ(yz)
Γ_{xyz}	3	-1	-1	-1	-3	1	1	1
$\Gamma_{ ext{unmoved atoms}}$	6	2	0	0	0	0	2	6
[Ttotal	18	-2	0	0	0	0	2	6

$$\Gamma_{total} = 3A_g + B_{1g} + 2B_{2g} + 3B_{3g} + A_u + 3B_{1u} + 3B_{2u} + 2B_{3u}$$

$$\Gamma_{rotational} = B_{1g} + B_{2g} + B_{3g}$$

$$\Gamma_{translational} = B_{1u} + B_{2u} + B_{3u}$$

therefore,

$$\Gamma_{\text{vibrational}} = 3A_g + B_{2g} + 2B_{3g} + A_u + 2B_{1u} + 2B_{2u} + B_{3u}$$

(b) We can separate the bond internal coordinates into one C-C bond and 4 C-H bonds.

D_{2h}	Е	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	σ(xy)	σ(xz)	σ(yz)
Гсн	4	0	0	0	0	0	0	4
$\Gamma_{\sf CC}$	1	1	1	1	1	1	1	1

$$\Gamma_{\text{CC}} = \mathsf{A}_{\text{g}}$$

$$\Gamma_{\text{CH}} = \mathsf{A}_{\text{g}} + \mathsf{B}_{3\text{g}} + \mathsf{B}_{1\text{u}} + \mathsf{B}_{2\text{u}}$$

(c)

$$\widehat{P}^{A_g}(\Delta r_5) \propto \Delta r_5$$

$$\hat{P}^{A_g}(\Delta r_1) \propto \Delta r_1 + \Delta r_2 + \Delta r_3 + \Delta r_4$$

 $\hat{P}^{B_{3g}}(\Delta r_1) \propto \Delta r_1 - \Delta r_2 + \Delta r_3 - \Delta r_4$

 $\hat{P}^{B_{1u}}(\Delta r_1) \propto \Delta r_1 + \Delta r_2 - \Delta r_3 - \Delta r_4$

 $\hat{P}^{B_{2u}}(\Delta r_1) \propto \Delta r_1 - \Delta r_2 - \Delta r_3 + \Delta r_4$

(d) We can use the four C-C-H angles as internal coordinates for in-plane bending modes:

Each of these four angles can be varied independently of the others; we therefore expect no spurious modes.

D_{2h}	Е	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	σ(xy)	σ(xz)	σ(yz)
$\Gamma_{\theta 1=\theta 4}$	4	0	0	0	0	0	0	4

$$\Gamma_{\theta 1-\theta 4} = \Gamma_{\text{CH}} = \mathsf{A}_{\text{g}} + \mathsf{B}_{3\text{g}} + \mathsf{B}_{1\text{u}} + \mathsf{B}_{2\text{u}}$$

(e) We can use the results from Part C to write the SALC's easily:

$$\hat{P}^{B_{3g}}(\Delta\theta_1) \propto \Delta\theta_1 - \Delta\theta_2 + \Delta\theta_3 - \Delta\theta_4$$

There are no spurious modes from this choice of in-plane internal coordinates.

(f) The choice of internal coordinates for out-of-plane bends is more difficult. Imagine lines through the two C atoms, perpendicular to the plane of the molecule. We can use the angles from these lines to the H atoms:

 $\theta_5 + \theta_9 = 180^\circ$; $\theta_6 + \theta_{10} = 180^\circ$; $\theta_7 + \theta_{11} = 180^\circ$; $\theta_8 + \theta_{12} = 180^\circ$; we therefore expect 4 spurious modes.

Before we figure Γ_{05-012} , let's see what we expect. If we subtract the stretching and inplane bending modes from $\Gamma_{\text{vibrational}}$ we are left with

$$\Gamma_{\text{out-of-plane}} = B_{2g} + A_u + B_{3u}$$

$$\frac{D_{2h}}{\Gamma_{\theta 5 - \theta 12}} = \frac{E}{B_{2g}} + C_{2g} + C_$$

All of the operations except E move all of the angles. Reducing this rep gives us one irr. rep of each symmetry:

$$\Gamma_{\theta 5-\theta 12}$$
 = A_g + B_{1g} + B_{2g} + B_{3g} + A_u + B_{1u} + B_{2u} + B_{3u}

We cannot increase both θ_5 and θ_9 at the same time, for this is physically impossible. Likewise, θ_6 and θ_{10} , and so forth. Because the supplementary angles are related by $\sigma(yz)$, any irr. rep for which $\chi[\sigma(yz)] = \chi(E)$ will lead to a physically impossible mode. Thus, the spurious modes are A_g , B_{3g} , B_{1u} , and B_{2u} . (You should try using the projection operators of these irr. reps if you don't follow the logic used above.)

For the three remaining modes we expect:

$$\hat{P}^{B_{2g}}(\Delta\theta_5) \propto \Delta\theta_5 + \Delta\theta_6 - \Delta\theta_7 - \Delta\theta_8 - \Delta\theta_9 - \Delta\theta_{10} + \Delta\theta_{11} + \Delta\theta_{12}$$

$$\hat{P}^{A_u}(\Delta\theta_5) \propto \Delta\theta_5 - \Delta\theta_6 + \Delta\theta_7 - \Delta\theta_8 - \Delta\theta_9 + \Delta\theta_{10} - \Delta\theta_{11} + \Delta\theta_{12}$$

This mode corresponds to twisting the two CH₂ fragments relative to one another.

$$\hat{P}^{B_{3u}}(\Delta\theta_5) \propto \Delta\theta_5 + \Delta\theta_6 + \Delta\theta_7 + \Delta\theta_8 - \Delta\theta_9 - \Delta\theta_{10} - \Delta\theta_{11} - \Delta\theta_{12}$$

What about the B_{1g} mode, which has not yet been accounted for?

$$\hat{P}^{B_{1g}}(\Delta\theta_5) \propto \Delta\theta_5 - \Delta\theta_6 - \Delta\theta_7 + \Delta\theta_8 - \Delta\theta_9 + \Delta\theta_{10} + \Delta\theta_{11} - \Delta\theta_{12}$$

This is not actually a vibrational mode; it corresponds to rotation about the C-C axis (Rz).