108 Chapter 2  Electronic, Vibrational, and Spin Configurations of Electronically Excited States; .

solid-state NMR. Certain values of y are positive (i-e., they increase the magnetic
energy) and certain values of y are negative (i.e., they decrease the magnetic energy)

2.40 Summary: Structure and Energetics
of Electrons, Vibrations, and Spins

In this chapter we have considered the visualization of the electronic, spin, and vi-
b‘rational structure of the starting points for photochemical reactions, namely, R* and
diradical reactive intermediates, I(D). In particular, a working paradigm has been de-
veloped for visualizing the structure of electrons in molecular orbitals, namely, the

vibrations of a harmonic oscillator and electron spins as magnetic vectors in a mag-

netic field. For each structural representation, we can construct state energy diagrams
that make it possible to understand the relative ranking of the electronic, vibrational
and magnetic states. Chapter 3 considers the visualization of the photophysical anci
photochemical transitions of R*, and the way that classical and quantum mechan-

_ ics provide a deep understanding of all transitions between states from a common
conceptual framework.
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CHAPTER

3.1 Transitions between States

The state energy diagram (Scheme 1.4) displays the time-independent energies for
the electronic states of a molecule associated with a given “spatially frozen” nuclear
geometry (i.e., the Born—Oppenheimer approximation, which allows us to focus on the
energetics and structures of R and *R). In this chapter, we describe the time-dependent
photophysical transitions between R and *R-in which the energetics and structures
change with time. Some of the transitions of interest to organic photophysics, shown
in Schieme 3.1, are as follows: (a) radiative absorption of a photon by R to produce *R;
(b) emission of a photon from *R to produce R; (c) radiationless transition from *Rto
produce R and heat; (d) radiationless transitions between electronically excited states,
*R, (higher energy) and *R (lower energy); and (e) radiative transitions between *R;
(higher energy) and *R, (lower energy). Each of these transitions may involve singlet
or triplet states. Transitions of R and I(D) involving a change of electron spin are
discussed in Section 3.12. ' '

Exemplars of structure-reactivity and structure—efficiency relationships for the ab-
sorptive and emissive radiative transitions (e.g., R + Av — *R and *R — R + hv) are
covered in Chapter 4. Exemplars of structure—reactivity and structure—efficiency re-
lationships for the radiationless transitions (e.g., *R — R + heat and **R, — *R; +
heat). Exemplars of the intersystem crossing in I(D) species are covered in Chap-
ter 6. A structural and pictorial model for the primary photochemical transitions of
Scheme 2.1 (i.e., *R — I and *R — F) are presented in Chapter 6.

According to the laws of quantum mechanics! (Section 2.2), the value of any
observable property P; of a state may be computed from Eq. 3.1 if the wave function of
the state W, and the mathematical operator P; corresponding to the observable property
are known. For example, if the electronic energy of a state E is to be computed, the
operator P, corresponds, in the Born—Oppenheimer approximation, to the classical
repulsive Coulombic interactions (€2/r) between two electrons in the field of the fixed
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(@ R+h —*R

(b) *R— R+ hv

(¢) *R - R + heat

(d) *R, — *R; + heat
(e) *Ry —> *R;+ hv

Scheme 3.1  Important photophysical processes in
molecular organic photochemistry.

positive nuclear framework. In the matrix element of Eq. 3.1, the two wave functions

-involved are identical. This means that the matrix element refers to the property of a
single state, such as the energy of the state.

Magnitude of observable property P, =< W,|P|{¥, > Matrix element (3.1)

In Chapter 2, the most important observable properties P; of interest were the state
energies (E,) of the wave functions W,,, where n is the quantum number for the state.
In this chapter, we are interested in the rates of transitions between an initial state WV;
(the initial state is given the subscript 1) and a second state W, (the second state is given
the subscript 2). By knowing the wave functions ¥; and W, and the laws of quantum
mechanics, the rate k of a transition W; — W, can be computed from the square of
a matrix element corresponding to the transition (Eq. 3.2) if P,_,,, the operator that
corresponds to the interaction that triggers the W; — ¥, transition, is known. The
rate of a transition that occurs in a single step (called an elementary step) is given the
symbol k (i.e., the rate constant). The symbol “~” in an equation means that constants
and unessential mathematical features have been omitted for simplicity. Notice that
in the matrix element of Eq. 3.1, the two wave functions involved are different, which
means that the matrix element refers to a transition between two states.

k for the W, — W, transition P;_,, ~ < W|P_,,| ¥, >> (3.2)

The rates for each of the transitions in Scheme 3.1 can be estimated by a form
of the Eq. 3.2 matrix element. For example, the matrix element given by Eq. 3.3
corresponds to the probability of the transition R + hAv — *R in Scheme 3.1, where
the wave functions are represented by the symbols for the initial and final states,
¥,(R) and W,(*R), respectively, and Py, is the appropriate operator corresponding
to the interaction of the R electrons with a photon (or, more precisely, with the
electromagnetic field). The use of the square of a matrix element to compute a rate
for a transition is at the heart of Fermi’s golden rule (Eq. 3.8) for transitions between
weakly coupled states.

k for the W,(R) + v — W, (*R) transition ~ < ¥;(R)| Py, | ¥, (*R) >2 (3.3)

In general, the interaction corresponding to the operator P;_,, “distorts” the wave
function ;. If this interaction makes ¥, “look like” W,, a transition between ¥, and
W, can be “triggered”. In the language of wave mechanics, the interaction correspond-
ing to P. . » causes the wave functions W, and W, to “mix” with one another. Effective
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mixing of two waves occurs only under the very special condition of a resonance be-
tween the two waves W} and W,. We describe how this notion of resonance due to the
mixing of wave functions provides an excellent quantum intuition for the visualiza-
tion of all of the transitions listed in Scheme 3.1. For example, the visualization of
the resonance corresponding to Eq. 3.3 involves “picturing” how the electromagnetic
field of a light wave (a photon, Av) mixes W;(R) with W,(*R) and causes a resonance
between the two wave functions (when energy and momentum can be conserved). The
photon carries the energy and the interaction that is required to achieve the resonance
and cause the electronic transition R + v — *R. Chapter 4 describes and visualizes
this resonance in detail with many experimental exemplars.

As with the process for a “zero-order” guess about the nature of the operators (P)-

that correspond to the properties of states, the mathematical form of the operator P, _, ,,
corresponding to the interaction (or perturbation) that causes the transition, is usually
made by appealing to a classical model for interactions corresponding to an operator
P;_,, that can induce transitions ¥; — ¥,. The model for P;_,, is then modified to
include the appropriate quantum and wave mechanical effects. Once this is done,
we can express the operator and wave function in pictorial terms and qualitatively
estimate the value of the mathematical integral or matrix element < W;| P;_, ,|¥, > by
an equation of the form of Eq. 3.2. This qualitative evaluation of the matrix elements
provides. useful selection rules for the transitions shown in'Scheme 3.1. Selection
rules serve as a guide to the plausibility of a given transition and the probability of a
transition from a state when there are several plausible transitions. In general, P;_, ,
represents the mathematical form of small interactions that canbe considered as weak
first-order perturbations of the zero-order, or starting, approximation. This result will

always be the case when good zero-order electronic wave functions (¥,) have been
selected.

3.2 A Starting Point for Modeling
Transitions between States

A selection rule is a statement of the plausibility that a state may undergo a specific
type of transition under a specific set of circumstances. For the photophysical tran-
sitions shown in Scheme 3.1, we seek to develop selection rules that will provide
quantum intuition as to whether the probability (or rate) of a transition is closer to the
hypothetically “strictly forbidden” (implausible) or “fully allowed” (plausible) lim-
its. The pictorial process for transitions is an extension of the process of visualizing
states, except that the notion of time dependence (i.e., transitions between one state
and another) is introduced. We begin with a visualization of the wave functions corre-
sponding to the initial state (¥;) and final state (\W,) involved in a transition ¥; — W,.
With a picture of the wave function of the initial and final states in mind, we apply the
rules of quantum mechanics to estimate the (square of the) magnitude of the matrix
element (Section 2.5) that describes the qualitative rate of the transition (Eq. 3.2).
To qualitatively estimate the magnitude for the matrix element of Eq. 3.2, we need a
picture not only of the wave functions (i.e., the structures) for the initial and final states
but also of the operator, P,_,,. The operator represents the interactions or forces that
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most effectively distort the initial state ¥, and make W look like the wave function of
the final state W,. It is natural to accept a physical picture for which transitions occur
fastest between two states when the two states are identical in energy and when the
two states involved in the transition “look alike” or can be easily made to look alike as
the result of a perturbation ( P,_, ,). This procedure follows the principle of “minimum
quantum mechanical reorganization of wave functions” for the fastest transitions. The
reorganization includes the energy required to change the molecular structure, motion
(phase), and energy required to make W; look like the molecular structure, motion
(phase), and energy of W,. By “look alike” we mean “look alike in all respects.”

When two classical waves are similar in energy and look very much alike, they
are in excellent condition to go into resonance and mix with one another. Quantum
mechanics picks up on this classical idea of the property of waves and states that the
wave functions of the two states must have the same energy and look alike in order for
resonance to occur and for transitions to occur between the two states. If the initial state
W, goes into a state of resonance with the final state W, there is a certain probability
that a transition W; — W, will occur as the result of the resonance. In a schematic
way, the transition ¥; — W, can be viewed as occurring as a “reaction” between the
wave function W, as a substrate and a perturbation Py, as a “reagent.” The systems
interact and go into a “transition state” for which W, is mixed into W;. The transition
state contains a “mixture” of W; and W, and may be described as a “mixed” wave
function, W, + W,. The transition state has a certain probability of collapsing back to
W, or to. W,. When this happens, a complete transition has occurred.

- As'was the case for the visualization of state properties, the “true” wave function
can be approximated by the product of an electronic wave function W, a vibrational
wave function x, and a spin wave function S, and transitions between the electronic,
vibrational, and spin portions of a transition can be pictured independently.

3.3 Classical Chemical Dynamics:
Some Preliminary Comments

We can obtain classical intuition about the dynamics of molecular transitions through
the concepts of classical mechanical dynamics,? which are based on the conservation
laws (i.e., the conservation of energy and the conservation of momentum) and New-
ton’s laws of interactions between particles. In particular, Newton’s first and third laws
for particles are the usual classical starting points when analyzing transitions between
electronic states:

1. The change in the motion of a system is proportional to the forces (interactions)
acting on the system. A central problem in understanding dynamic processes,
such as transitions between states, is the identification of the interactions
(the operators, P_, ,, corresponding to the forces or interactions) involved in
changing the motion and the energies of the particles in the initial state W, and
converting it to the final state W,. In general, these forces (interactions) are
electric or magnetic. Typically, the most important forces involved in causing
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transitions are electrostatic forces, such as electron—electron (electronic)
interactions. Other interactions due to vibrations and spin are usually much
weaker. Electronic and vibrational motions can often be visualized as associated
oscillating harmonic motions along a conveniently selected axis or a molecular
framework. Magnetic motions due to electron spins are associated with circular
or rotational motions. A forgue plays the same role in rotational motion that
Jorce does in linear motion. More precisely, for linear motion, force is equal
to the rate of change of the linear momentum (the back-and-forth motion),
whereas for rotational motion, torque is equal to the rate of change of the
angular momentum (the twisting circular motion). The concepts.of torque
and rotational motion are key to understanding and visualizing spin and spin
interconversions. \

2. To every action there is always an opposed and equal reaction. Interactions
that cause transitions result from interactions and occur reciprocally. Typically,
if we can identify an interaction in one direction of a transition, we can deduce
the nature of the interaction in the reverse direction.

 The challenge in determining the plausibility of transitions (i.e., ¥; — W,) is to
identify the energies (energy must be conserved) and the interactions (forces must
be available to change the motions and the structure of the initial system) that are
plausible in a particular system, and which of the possible available interactions that
conserve energy make the transition ¥; — W, plausible.

3.4 Quantum Dynamics: Transitions between States

In this chapter, we seek to estimate the relative rates of transitions between states by
visualizing matrix elements of the form depicted in Eq. 3.2. Recall from Chapter 2
that we described pictorial models for the molecular wave function (¥p) in terms of
the approximate electronic (v/), vibrational (x), and spin (S) wave functions. Qur
main task in this chapter is to visualize the operators P,_,, in Eq. 3.2 and deduce how
they operate on the wave functions ¥, x, and S to produce a final value of the matrix
element corresponding to the W; — W, transition.

3.5 Perturbation Theory!3

Mathematical methods were developed to generate approximate wave functions for
complicated organic molecules from simpler systems for which the wave function
is known more precisely and which resemble the molecular system of interest as
closely as possible. These simpler, approximate wave functions are then “distorted” by
a mathematical perturbation (P’), which provides solutions to the wave equation that
are closer to the solutions of the true wave function and the true electronic energies.
If the exact system resembles the approximate system closely, the distortion required
is small and can be considered to be a small “perturbation” of the approximate wave
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function. Perturbation theory is a mathematical method that provides a recipe for
using weak perturbations for mixing wave functions of the approximate system in
an appropriate manner so as to achieve better and better approximations of the true
system.

Suppose, for example, that we start with an approximate electronic wave func-
tion (W,). The solution of the wave equation (Eq. 2.1) provides the electronic energy
(Ey) of . Such approximate wave functions and energies are called zero-order wave
functions and zero-order electronic energies, respectively. If a zero-order wave func-
tion (W) is a reasonable approximation to the true wave function (), perturbation
theory can be employed to “distort” W, and its E, in.the direction of ¥ and the true
state energies E,. Mathematically, the approximate wave function ¥, is said to be
perturbed (or corrected) to look more like the true wave function (¥). The key to
the successful use of perturbation theory is the judicious selection of zero-order wave
functions (W), and the correct physzcal perturbation to serve as an operator (P’') that
mixes wave functions.

A weak perturbation is defined as one that does not significantly change the en-
ergies associated with the zero-order wave function. Often, weak perturbations are
responsible for triggering the transitions shown in Scheme 3.1. A weak perturbation,
P’ only slightly distorts the zero-order electronic (or vibrational or spin) wave func-
tion. This distortion can be interpreted as a “mixing” of the wave functions of the
initial state (¥,) and the final state (W,) as the result of a perturbation whose operator
is Py_,,. As a result of the perturbation-induced mixing, ¥; now contains a certain
amount of ¥,. That is, there is a resonance between W; and W,. This resonance can be
expressed in terms of Eq. 3.4, where A is a measure of the amount of W, that is mixed
into W as the result of the perturbation P;_,,. The value of A can vary from 0 to 1.

\Ill “+ P1_>2 —- \Ijl + A,‘Ijz -—> 1‘112 (3.4)
—— [ — ——

Initial state Resonance Transition
+ interaction to final state

The basic idea of perturbation theory is that there is a finite probability that
after the weak perturbation Pj_,, has been applied to ¥, the system will be able
to achieve resonance so that a certain amount of W, will be mixed into W;. The mixing
coefficient, A, is a measure of the extent of distortion of ¥, toward W, produced by
the perturbation. Before the resonance, the system is approximated as “purely” ¥,
and after the resonance and relaxation, the system is approximated as “purely” W,. In
Eq. 3.5, we show how A is computed.

The modification of the approximate initial wave function ¥, to make it look like
the final state W, is thus achieved by mixing into it other wave functions of the zero-
order system in appropriate proportions through the interactions represented by the
operator Py_,,. If the correct operator (interaction) P;_,, has been selected and the
proper conditions are present (i.e., the conservation laws are obeyed), the mixing
makes ¥, “look like” ;. The more the mixing makes W, look like W, the larger
the mixing coefficient (1) becomes, and the faster and more probable is the ¥; — ¥,
transition.

According to perturbation theory, the first-order correction of a wave function ¥,
is given by the mixing coefficient A (Eq. 3.4), which is directly proportional to the
strength of the perturbation P’, and is inversely proportional to the separation of the
energy between the interacting states (A E;,) being mixed (Eq. 3:5). The first-order
wave function is obtained by multiplying W, by A and adding the result to ¥, (Eq. 3.6).

A = (strength of the perturbation P’)/(energy of separation of ¥; and W,) (3.5a)
A=< WIIPII\II2 > /AE12 (3.5b)
\Il; (first-order wave function) = ¥; + AW, (zero-order wave function).  (3.6)

Based on Egs. 3.5 and 3.6, there are two general rules of perturbation theory
that provide us with very important quantum intuition for understanding the role
of interactions in promoting effective and fast transitions between electronic states:
(1) the stronger the perturbation P', the stronger the mixing and distortion of the
initial wave function V,, and (2) the smaller the energy separation AE between the
two interacting wave functions, the stronger the mixing. For two states (¥, and W,)
that are widely separated in energy relative to the perturbation, therefore, the system
is generally expected to be weakly responsive to any perturbation, and mixing is
implausible (in other words, it will be relatively difficult to make ¥; and ¥, look alike,
even for a strong perturbation). When a transition involves two states that are very close
in energy, on the other hand, the initial system is very sensitive to perturbations and

may be strongly perturbed, even by weak perturbations. When W; and W, have very .

similar energies, the two systems become “easy to mix” if the correct perturbation is
available to operate on the system. The two states (¥; and W,) easily transform one
into the other even through weak perturbations. This ease of mixing for states that are
close in energy is a characteristic resonance feature of waves. Classically, it is easier
to distort a weak spring (Fig. 2.4, right), but more difficult to distort a strong spring
(Fig. 2.4, left) with external perturbations. The same situation holds for a quantum
mechanical spring (e.g., vibrating electrons or atoms), because in qﬁantum mechanics
a stiff spring has widely separated energy levels (Fig. 2.5, left) and is difficult to
perturb (i.e., its wave functions are relatively difficult to mix) compared to a soft
spring (Fig. 2.5, right), which has closely spaced energy levels and is easier to perturb
(i.e., its wave functions are relatively easy to mix).

The rates of “fully allowed” transitions between electronic states are limited only
by the zero-point electronic motion change involved in the transition, provided the
nuclear and spin configurations remain constant. Recall from Chapter 1 that we used
the time scale for the completion of an orbit by a Bohr electron as a benchmark for
the fastest rate of electronic motion. An electron completes its Bohr orbits at a rate
of ~10'5-1016 571, 50 this sets an approximate upper limit to the zero-point motion
of an electronic system. However, if the nuclear and/or spin configurations change
during a “fully allowed” electronic transition, the transition will be “rate limited” by
the time it takes to change the nuclear or spin configuration, not by the time it takes
the electron to make a zero-point motion. In other words, the electronic part of ¥,
may have a rate of 101-10'6 s~! in “looking like” W,, but the rate of the ¥; — W,
transition may be limited by the time it takes to make the vibrations or spins in the
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final state (\I,) “look like” those in the initial state (¥)). Such a view of transition rates
provides benchmarks for the maximal rates of various “allowed” transitions. When a
rate is slower than the maximal rate, electronic shape and motion, vibrational shape
and motion, or spin configuration and motion may serve as kinetic “bottlenecks” in
determining transition rates.

To understand molecular kinetics, we must obtain the rate constants (k) for the
transitions between the electronic, vibrational, and spin states. It is convenient to
consider the observed rate constant for the transition between two states (kgps) In
terms of the maximum possible rate constant (kgnax) (the zero-point motions determine
the rate constant) and the product of the prohibition factors (f) for the electronic,
vibrational, and spin aspects of the transitions. In Eq. 3.7, for a given transition
from W, to W,, f, is the prohibition factor associated with the electronic change (the
orbital configuration change), f, is the prohibition factor associated with the nuclear
configuration change (usually described as a vibrational change in position or motion),
and f is the prohibition factor associated with a spin configuration change (fy=1
for transitions for which there are no spin changes). -

Observed Zero-point Motion-
Rate Constant limited Rate Constant “Fully Allowed Rate”

kobs = k&ax X fevaxfs
<= —_—

Prohibition to maximal
caused by “selection rules”

3.7

Prohibition factors due to changes in
electronic, nuclear, or spin configuration

In most cases kg, is much smaller than kgax. When weak interactions between
zero-order states trigger the transition, the rate of W, — W, transitions is given by
Fermi’s golden rule* (Eq. 3.8), where p is the number of states of W, that are of
the same energy as W, and are capable of being in resonance with Y, through the
perturbation P/_,. The term p is referred to as the density of states that are capable
of effectively mixing W, with V,. These are accessible states for which ¥, and ¥,
can achieve the same energy during the time scale of the interaction that mixes the
states. Pictorially, the higher the density of states for a transition that is capable of
responding to a perturbation P’, the more statistically probable that a transition will
be triggered by any interaction. Fermi’s golden rule applies to electronic, vibrational,
and spin transitions that are triggered by interactions that are weak relative to the
energy separations of the states involved. Consequently, the form of Eq. 3.8 shows
up a number of times when discussing the rates of transitions that are induced by
weak electronic, vibrational, or spin interactions. These weak perturbations include
the interaction of the electromagnetic field with the electrons (responsible for the
absorption and emission of light) and the interactions between the HOs and LUs of
molecules that lead to chemical reaction and energy transfer.

kops ~ p[< W[ P, ,|¥, >]* Fermi’s golden rule (3.8)

For example, the distortion of the electron cloud of a molecule caused by the (weak)
initial interaction of an electromagnetic field can be interpreted quantum mechanically
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one or more excited states (*R) to produce a perturbed wave function of R. Since
the perturbed wave function of R has wave functions of excited states mixed into it,
there is a finite probability of finding the system in an excited state, *R. In the case
of an interaction with the electromagnetic field, the matrix element corresponds to
the transition dipole moment (Chapter 4). This matrix element may be visualized as
being a measure of the extent of the oscillating movement of negative electrical charge
along the positive nuclear framework of the molecule as the result of the molecule’s
interaction with the electric component of the oscillating electromagnetic field. If
the extent of the oscillation is great (i.e., if a large transition dipole is generated by
the interaction), then the molecule’s electrons and the electromagnetic field interact
strongly (i.e., the magnitude of the matrix element is large) and the transition rate is
high.

Fermi’s golden rule provides a basis for the transitions of “selection rules” that are
triggered by weak interactions; namely, if the value of the matrix element of Eq.3.8is
zero (at a defined level of approximation), then the transition is zero and the transition
is “forbidden.”

In Section 2.3 (Eq. 2.4), we described how to use the Born-Oppenheimer approx-
imation to approximate the true (but mathematically unattainable) wave function W
into a product of an electronic (y), vibrational (x), and spin (S) wave function. For
transitions that do not involve a change in spin (i.e., S; = S,), electronic spin does not
provide any prohibition on k. In this case, the rate of transition between ¥, and ¥,
is limited by either the time it takes to make the electronic wave JSunction ¥, look like
Y, or the time it takes for the vibrational wave function x; to look like X2-

For organic molecules, the most important perturbation for “mixing” electronic
wave functions that initially do not look alike is vibrational nuclear motion that
is coupled to the orbital motion of the electrons (i.e., vibronic coupling). Let the
operator corresponding to vibronic coupling be called P,;; the matrix element for the
perturbation that vibrationally mixes v, and v, is then given by < Y1l Py lry > Ttis
most important that the electronic wave function of v, be distorted into a shape that
looks like v, by some vibration that couples the two states. It is this distortion, caused
by molecular vibrations, that makes the two wave functions “look alike” and that will
allow the transition to occur. When this is true, we need only consider the magnitude
of the overlap integral of the vibrational wave functions, < X1lx2 >. The square of

the vibrational overlap, < x;|x, >2, in Eq. 3.9 is called the Franck—Condon (FC)

factor. The Franck—Condon factor is a measure of the overlap of the vibrational wave
functions of the initial and final states and is mathematically similar to the electron
orbital overlap integral (Section 2.14, Eq. 2.20). We show how to obtain a qualitative
visualization of the FC factor in Sections 3.10 and 3.11. To summarize, using Fermi’s
golden rule (Eq. 3.8), ks is proportional to the square of the product of the vibronic
coupling matrix element and the vibrational overlap matrix elements associated with
the ¥, — v, transition, as shown in Eq. 3.9.

KO <y |Pulty >2
ko = [“‘“ | % [<xle>? (3.9
AEIZ ———

“

Vibrational overlap

Wiheatinnmal anvalic o
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When the (radiationless or radiative) transition W; — W, involves a change in the
spin (S; # S,), which perturbation is most likely to couple states of different spin? In
molecular organic photochemistry, the most important transitions involving a change
in spin are radiative or radiationless singlettriplet or triplet-singlet transitions. For
organic molecules, the most important perturbation available to make a pair of parallel
triplet spins (1) look like a pair of antiparallel singlet spins (1) is the coupling of
the electron spin motion with the electron orbital motion (termed spin—orbit coupling),
which takes one of the parallel electron spins of a singlet state (11) and twists it or
flips it, making the spins antiparallel (1). The terms “parallel” and “antiparallel”
are approximations used here for simplicity; recall from Section 2.28 that the 3D
representation of spin vectors is a more accurate description and is required when we
analyze spin transitions in Section 3.12.

Let us label the operator that induced spin—orbit coupling as P,,, and the matrix
element for the transition as < v;] P,,|y, >. This matrix element is a measure of the
strength (or the energy) of the spin—orbit interactions. For simplicity, the spin wave
functions, S, andS,, need not be considered explicitly: recall from Table 2.1 that we
use the symbols « and B to represent the wave functions of a spin up (1) and spin
down ({), respectively. For transitions that involve a change in spin, we can modify
Eq: 3.9 to produce Eq. 3.10, which includes the spin change prohibition.

TR <P 2 2
kObsz[ s < V1l vﬂ»*%>]x [ﬂm] < [<xin>?]

AE?, AE?,

Vibrational overlap
Franck-Condon factors

(3.10)

Vibrational coupling Spin—orbital coupling

3.6 The Spirit of Selection Rules
for Transition Probabilities

As a starting approximation, a W; — W, transition is “forbidden” (implausible) if
the value of the matrix element equals zero, and the transition is “allowed” if the
value of the matrix element is finite. The matrix element for a transition probability
for the W, — W, transition, < ;| P;_,,|¥, >, may be calculated for a certain set
of zero-order assumptions that assign an initial idealized symmetry for the wave
functions for the electrons, nuclei, and spins (¥, x, and S) and a selected operator
(Py_,,) thatis assumed to trigger the transition. If the computed matrix element for the
transition probability equals zero, the transition is strictly forbidden in the zero-order
approximation. The plausibility of the transition in first order will depend on whether
an interaction (e.g., vibronic or spin—orbit) exists that can overcome the forbidden
character of the zero-order approximation.

When the approximate wave functions ¥; and W, possess a more realistic non-
ideal symmetry, or when previously ignored forces and a different operator have been
included, a new calculation of the matrix element may yield a first-order correction,
and the value of the matrix element generally will be nonzero. If the transition proba-

Section 3.7 The Effect of Nuclear Motion on Electronic Energy and Electronic Structure

bility corresponding to the matrix element is still small (e.g., < 1% of the maximum
transition probability), then the process is “weakly allowed” (or implausible) in the
sense that the rate of the process is not expected to compete with other fast transi-
tions from the initial state. If the matrix element computed by the new calculation for
the transition is large (e.g., close to the maximum transition rate, f, in Eq. 3.7), then
the transition can be classified as “strongly allowed” (or probable) in the sense that
its rate is expected to be among the fastest of the plausible transitions. Such qualita-
tive descriptions can provide only a rough feeling for transition probabilities. Indeed,
sometimes the breakdown of selection rules is so severe that the magnitude of the
“forbidden” transition probability approaches that of the “allowed” transition proba-
bility. When this occurs, we have selected a poor zero-order starting point (the wave
function ¥ or the operator P) for our evaluation of the transition probability.

3.7 Nuclear Vibrational Motion As a Trigger for Electronic
Transitions. Vibronic Coupling and Vibronic States:

The Effect of Nuclear Motion on Electronic Energy

and Electronic Structure’

For spin-allowed electronic transitions between ¥, and W,, we need to devise a par-

* adigm for evaluating the matrix elements for vibrational coupling of the electronic

states of W, and W, (i.e., vibronic coupling). The goal is to estimate how the vibra-
tional wave functions (Section 2.19) for spin-allowed transitions influence the rate of
both radiative and radiationless electronic transitions (Scheme 3.1). The FC factors,
< x1lx2 >2, are a measure of the similarity of the vibrational wave functions of ¥,
and W, and are critical in determining whether a transition is allowed or forbidden in
first order. ’

The Born—Oppenheimer approximation (Section 2.3, Eq. 2.4) allows the genera-
tion of a zero-order description of the electronic structure and electronic energy of a
molecule, based on an assumed frozen, nonvibrating nuclear geometry. We must con-
sider the effect of nuclear vibrational motion on the electronic structure and electronic
energy of a molecule and how this vibrational motion can serve as a perturbation that -
mixes electronic wave functions and how this mixing can induce transitions between
electronic states. Our goal is to replace the pure, classical “vibrationless” molecule
with a vibrating molecule and to be able to visualize how this motion will modify our
zero-order model. We call the states of a vibrating molecule “vibronic” states rather
than pure “electronic” states, because vibrations are constantly serving as a source of
mixing of electronic states, especially electronic states that are of similar or identical
energy in zero order. The basic concept is that the vibrations of a molecule will dis-
tort the zero-order electronic wave function only slightly, therefore serving as a weak
perturbation on the approximate wave function, but that certain vibrations will distort
the approximate function so that it looks like the wave function of other electronic
states to which transitions may occur. Again assuming only weak interactions, the en-
ergy Ey of a vibronic perturbation (from perturbation theory) is given by Eq. 3.11a.
From Fermi’s golden rule for weak interactions (Eq. 3.8), the rate of the transition
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from ¥, — W, js proportional to the square of the matrix element (where Pl ,is
replaced by P,;) for the transition multiplied by the density of states (p) capable of

being mixed by Py, during the time scale of the perturbation (Eq. 3.11b).
Ey= <[Py |¥, >2 /AE,, (3.11a)
Kops ~0 < Wy| P | W, 2 (3.11b)

InEq. 3.11a, ¥, and W, are two pure zero-order electronic states that are “mixed” by
Py and AE, is the energy difference between the zero-order electronic states that
are being mixed by the vibronic interaction.

We have described interactions that allow the use of Fermi’s golden rule as “weak”
perturbations. At this point, we provide some numerical benchmarks for the values of
the energy separations (A E,,) that are involved in the vibronic mixing of electronic
states. What do we mean by a small or large value of A E;,? We know from perturba-
tion theory (Egs. 3.5 and 3.6) that if AE), is large, the mixing (the value of 1) of the
states will be small, and if AE;, is small, the mixing of the two states will be large.
Intuitively, what we mean by small or large has to do with how the vibronic mixing
energy (Ey) compares to the energy separation (A Ey,) of the electronic states that
are being mixed by vibronic interactions. If Ey is small (i.e., a few percent) com-
pared to AE,, the mixing of the states is expected to be small. In general, for organic
molecules, the value of Ey is on the order of vibrational energies (Section 2.19),
which range from ~ 10 kcal mol™! for X—H stretching vibrations to ~ 1 kcal mol~!
for C—C—C bending vibrations, As a result, X—H vibrations can be very effective in
mixing electronic states. ‘

Vibronic interactions do not significantly mix electronic states whose energy sep-
aration (A E}5) is 50 keal mol~! or greater. The energy gaps between the ground state
(R) and lowest excited states (*R) of most organic molecules are > 50 kcal mol~L, so
the vibronic mixing of R and *R is weak. This weak vibronic coupling is the reason
that the Born-Oppenheimer approximation works so well for ground-state molecules;
that is, vibrations in the ground state do not mix electronically excited states very ef-
fectively because the electronic energy gap between R and *R is much larger than the
vibrational energies. )

However, vibronic interactions are much more likely to be significant in mixing
zero-order electronically excited states (*R; and *R;), since AE, between excited
states is often on the order of only several kilocalories permole or less, so excited states

are typically packed together with much smaller energy gaps than the energy gaps that

separate *R from R. When electronic states are separated by small energy gaps, the
electronic energy and electronic Structure of the states may vary cbnsiderably duringa
vibration. Thus, vibrational motion of the appropriate type (e.g., a motion that couples
two electronic states that are close in energy) can be very effective in mixing excited
states. Such effects are of great importance in triggering and, therefore, determining
the rates of transitions from excited states.

The importance of similar energy states in determining the rates of transitions is
apparent in Fermi’s golden rule, where kobs depends on the density of states (p) that
have the same energy in both V; and W, (Egs. 3.8 and 3.1 1b). We also conclude that
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Figure 3.1 The effect of vibronic motion on the hybridization of
a p orbital.

electronic transitions from any *R, both radiative and ra‘diationless, qeper;d* lc;n tl:;
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Now, consider a bending (umbrella-flipping) vibration that breaks the planar sym-
metry of the molecule and causes a change in the hybridization of the carbon atom
(Fig. 3.1b). Intuitively, we expect the “pure p” orbital to change its shape in response
to the fact that more electron density (due to the electrons in the bonds) is on one side
of the plane. We say that a rehybridization of the carbon atom occurs, and that the
“pure p” orbital begins to take on some s character; that is, the out-of-plane vibration
converts the pure p orbital into an sp" orbital, where n is a measure of the “p charac-
ter” remaining. Since an s orbital is considerably lower in energy than a pure p orbital,
an sp” orbital will be lower in energy than a p orbital because the sp” orbital has ac-
quired some s character. Thus, the mixing due to out-of-plane vibrational motion can
change the energy of the free valence orbital significantly.

In the extreme situation for sp”, where n = 3, the out-of-plane vibration causes a
continual oscillating electronic change, p (planar) <> sp> (pyramidal), as pyramidal
shapes interconvert through the planar shape. A significant vibronic coupling of the
electronic and nuclear motion occurs due to this vibration, causing the value of n to
oscillate between 2 and 3. Now, if the initial state (W;) is a pure p wave function and the
final state (W,) is a pure sp° state, the out-of-plane vibrational motion makes ¥, “look
like” W,, but the in-plane vibrational motion does not, because the in-plane bending
vibration does not introduce any s character into the p orbital. In other words, the
out-of-plane vibrational motion “mixes” the hybridization of the free valence orbital,
but the in-plane vibrational motion does not. In a convenient shorthand, we can write
W, (p, planar) <> W,(sp®, pyramidal). If the operator that describes the in-plane (ip)
vibronic interaction is called Py, and the operator that describes the out-of-plane (op)
vibronic interaction is called P, then the matrix element for in-plane vibronic mixing,
< Wy| Py|W, >, equals 0, and the matrix element for out-of-plane vibronic mixing,
< Wy | Py W, >, is finite in this case.

To summarize, some, but not all, vibrations are capable of perturbing the electronic
wave functions and the electronic energy of zero-order electronic states. The energy
difference of the zero-order electronic levels and vibronic levels may be small relative
to the total electronic energy, yet the matrix element < W;|P,;,| ¥, > may “provide
a first-order mechanism” for the transition from one vibronic state to another, even
though the electronic transition is strictly forbidden (i.e., < ¥;|P|¥, >=0) in the
zero-order approximation.

3.8 The Effect of Vibrations on Transitions between
Electronic States: The Franck—-Condon Principle

The rates of transitions between electronic states (¥; — W,) can be limited by either
the rate at which the electrons in W, can adjust to the nuclear geometry of ¥,, or the
rate at which the nuclear geometry of W, can adjust to the nuclear geometry of ¥,.
The Born-Oppenheimer approximation (Section 2.3) assumes that electron motion
is so much faster than nuclear motion that the electrons “instantly” adjust to any
change in the position of the nuclei in space. Since an electron jump between orbitals
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(Section 1.13) generally takes ~ 10~1°~1071¢ s to occur, whereas nuclear vibrations
take ~ 10713-10~ !4 s to occur, the electron jump'is generally much faster and will not
be rate determining for transitions between two electronic states, ¥; — W,. Thus, the
transition rate between electronic states (of the same spin) is limited by the ability of
the system to adjust to the nuclear configuration and motion affer the change in the
electronic distribution of ¥, to that of W,. The rate of transitions induced by vibrations
(nuclear motion) depends not only on how much the electronic distributions of the
initial and final states look alike but also on how much the nuclear configuration and
motion in the initial and final states look alike. :

Expressed in classical terms, the FC principle states that because nuclei are much
more massive than electrons (the mass of a proton is ~ 1000 times the mass of an
electron), an electronic transition from one orbital to another takes place while the
massive, higher-inertia nuclei are essentially stationary. This means that, at the instant
that a radiationless or radiative transition takes place between ¥, and ¥, (e.g., for
any of the transitions shown in Scheme 3.1), the nuclear geometry of the massive
nuclei momentarily remains fixed while the new electron configuration readjusts
from that W, to that of W,. After completion of the electronic transition, the nuclei
experience the new electronic negative force field of W, and begin to move and swing
back and forth from the geometry of W; until they adjust their nuclear geometry to
that of W,. From the FC principle, we conclude that the conversion of electronic
energy into vibrational energy is likely to be the rate-determining step in an electronic
transition between states of significantly different nuclear geometry (but of the same
spin). :

Expressed inquantum mechanical terms, the FC principle states that the most prob-
able transitions between electronic states occur when the wave function of the initial
vibrational state (x;) most closely resembles the wave function of the final vibrational
state (). In analogy to the orbital overlap integral < ¥ |y, > (Section 2.14); which
defines the extent of the mathematical orbital overlap for a pair of electronic wave
functions or a set of orbitals, we define the vibrational overlap integral in terms of
the extent of overlap for a pair of vibrational wave functions (x; and x,) and use the
symbol < x;]x, > to indicate the degree of the overlap integral of the two vibrational
wave functions, x; and x,. Since two wave functions generally have a greater resem-
blance (i.e., look more alike) when the vibrational overlap integral < x;|x, > is closer
to 1 (the maximum value for complete overlap), the larger the value of the integral,
the more probable the vibronic transition. From Eq. 3.9, the rate constant (k) for
the W; — W, transition is proportional to < x;|x» >2. We can now understand why
< x1lx2 >? inEq. 3.9 is called the “Franck-Condon” factor.

In the following sections, we demonstrate that the FC principle provides a useful
visualization of both radiative and radiationless electronic transitions. For radiative
transitions, the motions and geometries of nuclei do not change during the time it
takes for a photon to “interact with” and to be “absorbed,” thus causing an electron to
jump from one orbital to another. For radiationless transitions, nuclear motions and
geometries do not change during the time it takes an electron to jump from one orbital
to another. : e
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3.9 A Classical and Semiclassical Harmonic Oscillator Model
of the Franck-Condon Principle for Radiative Transitions
(R+hv — *Rand *R — R + hv)

In the classical harmonic oscillator approximation (Section 2.16), the energies of the
vibrations of diatomic molecules were discussed in terms of a parabola in which the
potential energy (PE) of the system was displayed as a function of the displacement
(Ar) from the equilibrium separation of the atoms (Eq. 2.24 and Figs. 2.3 and
2.4). The harmonic oscillator approximation for molecular vibrations applies to both
ground states (R) and excited states (*R) and can be used as a starting point for both
radiationless and radiative photophysical transitions. First, let us consider how the FC
principle and FC factors apply to a radiative transition between two states in terms of
the harmonic oscillator model.5

Figure 3.2 shows classical PE curves for a diatomic molecule (X—Y) that behaves
as a harmonic oscillator. The top half of Fig. 3.2 is a representation of a classical
harmonic oscillator for which one of the vibrating masses (X) is very large (X is
attached to the left of the spring), and the other vibrating mass (Y) is much lighter
(Y is attached to the right of the spring). This diatomic. molecule can be viewed:as a
vibrating ball attached to a spring, which is affixed to a wall. This would be analogous
toalight atom (the ball) bonded to a much heavier atom (the wall), for example, a C—H
vibration where the carbon atom is analogous to the massive wall and the hydrogen
atom is analogous to the light ball. Most of the motion of the two atoms is due to the
movement in space of the lighter particle (the H atom).

Three PE curves are shown in Fig. 3.2 for three different situations with respect to
an initial nuclear geometry of an R state relative to that of an *R state. In Fig. 3.2a, the
equilibrium nuclear separation (rxy) of R is essentially identical to the equilibrium:
nuclear separation (*rxy) of the electronically excited *R molecule. In Fig. 3.2b, rgy
of Ris slightly different from *ryy of the *R molecule, with *ryy being slightly longer
because of (an assumed) slightly weaker bond resulting from electronic excitation
and the placement of an electron in an antibonding orbital. In Fig. 3.2¢c, rxy of R is
considerably different from *ryy of the *R molecule, with *rxy being considerably
longer because of the much weaker bond resulting from electronic excitation to put
an electron into an antibonding orbital. The difference in excess vibrational energy
(AE,;) increases as the difference (Ar = |*ryy — rxy|) in the equilibrium separations
of R and "R increases. It is zero for the case in Fig. 3.2a, small for the case in Fig. 3.2b,
and large for the case in Fig. 3.2c.

For each case in Fig. 3.2, a line is drawn vertically from the initial R state and
intersects the upper PE curve at the point that will be the turning point in the *R state.
This line represents a vertical electronic transition from R to *R. Radiative transitions
are called vertical transitions with respect to nuclear geometry, since the nuclear
geometry (rxy, the horizontal axis) is fixed during the electronic transition. The length
of the line representing the vertical electronic transition corresponds to the difference
in energy between R and *R that is absorbed in the transition, that is, the energy of
the absorbed photon is |Eg — Esxg| = AE = hv.
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Figure 3.2 = A mechanical representation of the Franck—Condon principle for radiative
transitions of a diatomic molecule, XY. The motion of a point representing the vibrational
motion of two atoms is shown by a sequence of arrows along the PE curve for the vibration
in the top set of curves.

Now, let‘us consider how the FC principle influences a radiative HO + hv — LU
orbital transition that takes R to *R. The time scale for photon absorption is on
the order of 10~1°~10~16 5. According to the FC principle, the nuclear geometry
(i.e., the separation of the two atoms) does not change during the time scale of an
electronic transition or orbital jump; that is, immediately after the electronic transition,
rxy = *rxy. Thus, the geometry produced at the instance of the electronic transition
on the upper surface by a radiative transition from a ground R state to an *R state
is governed by the relative positions of the PE surfaces controlling the vibrational
motion of R and *R.

If, for simplicity, we assume that the PE curves have similar shapes, and that the
minimum of one curve lies directly over the minimum of the other (Fig. 3.2a), the
Franck—Condon principle states that the most probable radiative electronic transitions
would be from an initial state that has a separation of ryxy in R that is identical to
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the separation (ryxy) of the excited state *R. Since the two curves are assumed to
lie exactly over one another, the most favored Franck-Condon transition will occur
from the minimum of the ground surface to the minimum of the excited surface, that
is, R(v = 0) 4+ hv — *R(v = 0). This situation is typical of the absorption of light
to induce a # — 7* transition of aromatic hydrocarbons that have many bonding
electrons, so that the excitation of one 7 electron to a 7* orbital does not si gnificantly
change the structure of *R compared to R (Chapter 4). To a good approximation,
therefore, we may regard the absorption of a photon as occurring from the most
probable nuclear configuration of the ground state (R), which is the static, equilibrium
arrangement of the nuclei in the classical model and is characterized by a separation
rxy-Based onFig. 3.2, there is no excess vibrational energy produced by the transition.

By using the exemplar of Fig. 3.2b, let us consider the absorption of light from
the HO of formaldehyde (the ng, orbital) to its LU (the 7* orbital). At the instance
of completion of the electronic transition is complete, the nuclei are still in the
same ground-state equilibrium (planar) geometry that they were before the transition,
because the electronic jump occurs much faster than the nuclear vibrations. However,
as the result of the orbital transition and the occupation of a 7* orbital, the electron
density of *R about the nuclei is different from the electron density of R about the
nuclei. Therefore, *R relaxes to a new geometry (that turns out to be a pyramidally
shaped H,C=0).

Figure 3.2c is an exemplar of a system that undergoes a very large structural change
upon going from R to *R. The & — 7* excitation of ethylene is one such example.
Although the equilibrium geometry of the ground state for ethylene (R) is planar, the
equilibrium geometry of the excited state for ethylene (*R) is strongly twisted, leading
to a large change in the equilibrium geometry of *R compared to R.

Now, letus consider the effect of the Franck~Condon principle on the excess of
vibrational energy that is produced in *R upon absorption of a photon. In Fig. 3.2a,

- where the initial and final geometries of R and *R are assumed to be identical, there

is no significant change in vibrational properties resulting from electronic excitation
(R + v — *R), so *R is produced with no excess vibrational energy. However, in
Fig. 3.2b and c, the electronic transition initially produces an *R state that is both
a vibrationally excited and an electronically excited species as the result of the new
force field experienced by the originally stationary nuclei of R. A few femtoseconds
after the R — *R transition, the atoms in *R will suddenly burst into a new vibrational
motion in response to the new electronic force field of *R.

In the case of the n,v* state of H,C=O0, an electron has been promoted into a 7 *
orbital? which will tend to make the C—O bond begin to vibrate and to stretch and
become longer. This new force, provided by the sudden perturbation of the removal
of an n electron and of the creation of a 7* electron, will induce a vibration along the
C—Obond. The new vibrational motion of the molecule in *R(n,7*) may be described
in terms of a representative point, which represents the value of the internuclear
separation and is constrained to follow the PE curve and execute harmonic oscillation.

The excess vibrational motion produced by absorption of a photon is indicated
by the set of arrows on the PE surface in Fig. 3.2b and c. The maximum velocity
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of the motion of the representative point on the PE surface depends on the excess
vibrational kinetic energy produced upon electronic excitation. The greater the excess
vibrational motion produced by Franck—Condon excitation, the greater the velocity
of vibrational motion produced immediately after electronic excitation. In the case of
the w — 7* transition of ethylene, the loss of a 7 electron and the creation of a 7*
electron strongly reduces the C=C bonding and essentially breaks the = double bond
and creates a C—C single bond in *R. The new electronic distribution in the 7,7 * state
favors a twisting about the essentially C—C single bond and an equilibrium geometry
that favors the two CH, groups perpendicular to each other rather than in the same
plane (this situation is discussed in detail in Chapter 6).

For the classical case of Fig. 3.2b and c, it follows that the original nuclear
geometry of the ground state is a turning point of the new vibrational motion in the
excited state, and that vibrational energy is stored by the molecule in the excited state.
Since the total energy of a harmonic oscillation is constant in the absence of friction,
any PE lost as the spring decompresses is turned into the kinetic energy (KE) of the
two masses attached to the spring, which sets the representative point into harmonic
oscillation. Therefore, the PE at the turning points, E.;,, determines the energy at
all displacements for that mode of oscillation. The greater the amount of vibrational
energy that is produced in *R upon photoexcitation, the greater the amplitude of the
vibration of *R.

Now, let us examine a “semiclassical” model (Fig. 3.2, bottom) that considers
the effect of quantization of the vibrational levels of the harmonic oscillator and of
zero-point motion on the classical model for a radiative electronic transition (we will
consider the wave character of vibrations in Section 3.10). In Section 2.18, we learned
that one of the effects of quantization on the harmonic oscillator is that only certain
vibrational energies are allowed. In a semiclassical model, therefore, the classical PE
curves must be replaced by PE curves displaying the quantized vibrational levels, each
with a vibrational quantum number, v = 0. For example, Fig. 3.2a (bottom) shows the
ground-state PE curve with a horizontal level corresponding to the: v = 0 vibrational
level. This level corresponds to a small range of nuclear geometries, determined by the
zero-point vibrational motion, with the classical equilibrium geometry at the center
of the vibration. Radiative transitions from v = 0 will therefore not be initiated from
a single geometry but will be initiated from a range of geometries that are explored
during the zero-point motion of the vibration. In Fig. 3.2a (bottom), the most probable
transition is from the v = 0 level of R to the v = 0 level of *R. In Fig. 3.2b, the most
probable transition is from the v = 0 level of R to the v = 1level of *R. In Fig. 3.2c,
the most probable transition is from the v = 0 of R to the v = 5 level of *R. As we go
from Fig. 3.2a to.b to c, the amount of excess vibrational excitation produced in *R
by the electronic transition increases. :

The final step in our visualization of the FC principle and radiative transitions is to
determine how to picture the wave functions corresponding to the vibrational levels of
R and *R. From this picture, we will see that the mathematical form of the vibrational
wave functions of R and *R controls the probability of both radiative and radiationless
electronic transitions between vibrational levels.
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3.10 A Quantum Mechanical Interpretation of
the Franck—-Condon Principle and Radiative Transitions’

Recall from Section 2.19 that according to quantum mechanics, the classical concept
of the precise position of nuclei in space and associated vibrational motion is replaced
by the concept of a vibrational wave function, x, which describes the nuclear con-
figuration and nuclear vibrational momentum during a vibration. In the language of
classical mechanics, the FC principle states that the most probable electronic transi-
tions will occur between those states possessing a similar nuclear configuration and
vibrational momentum at the instant of an electronic transition. In the language of
quantum mechanics, the FC principle states that the most probable electronic tran-
sitions are those that possess vibrational wave functions that look most alike in the
initial () and final (x,) states at the instant of the electronic transition.

A measure of how much two states undergoing a transition “look alike” is given by
the overlap integral (called the FC integral) of the vibrational wave functions of the two
states, < x| x» >. A net mathematical positive overlap of vibrational wave functions
means that the initial and final vibrational states possess similar nuclear configurations
and momentum in some region of space. Eq. 3.11b shows that the matrix element for
any electronic transition is directly related to the square of the vibrational overlap
integral (i.e., the FC factor, < x;|x, >2, Eq. 3.9).

The larger the FC factor, the greater the net constructive overlap of the vibrational
wave functions, the more similar x; is to x,, and the more probable the transition. Thus;
an understanding of the factors controlling the magnitude of < x;|x, >2 is crucial for
an understanding of the probabilities of radiative and radiationless transitions between
electronic states. The FC factor may be considered a sort of nuclear “reorganization
energy,” similar to entropy, that is required for an electronic transition to occur. Recall
that high organization implies a small degree of entropy and low organization implies
a large degree of entropy. The greater the reorganization energy, the smaller the FC
factor and the slower the electronic transition. The larger the FC factor, the smaller
the reorganization energy and the more probable the electronic transition.

The FC principle provides a selection rule for the relative probability of vibronic
transitions. Quantitatively, for radiative transitions of absorption or emission the FC
factor (< x1lx, >2) governs the relative intensities of vibrational bands in electronic
absorption and emission spectra. The Franck-Condon factor is also important in
determining the rates of radiationless transitions between electronic states. Since the
value of < x,|x, >2 parallels that of < X1lx2 >, we need only consider the FC integral
itself, rather than its square, for qualitative discussions of transition probabilities.
We can obtain considerable quantum intuition simply by noting that the larger the
difference in the vibrational quantum numbers for x; compared to x,, the more likely
it is that the equilibrium shape and/or momentum of the initial and the final states are
different, and the more difficult and slower and less probable the transition x; — x,
will be. Indeed, this is exactly the result anticipated from the classical FC principle. In
other words, the magnitude of the integral < x;|x, > is related to the probability that
an initial state x; will have the same shape and momentum as y,. If this probability
is high, the transition rate will be high also.
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Figure 3.3 Representation of the quantum mechanical Franck-Condon
interpretation of the absorption of light.

Consider Fig. 3.3, a schematic representation of the quantum mechanical basis of
the FC principle for a radiative transition from an initial ground electronic state v,
(i.e., R) to a final electronic excited state *yr, (i.e., *R). Absorption of a photon is
assumed to start from the lowest-energy, v = 0 level of v,, since this state is usually
the most populated vibrational level in the ground state of R. According to the FC
principle, the most likely radiative transition from v = 0 of ; to a vibrational level of
*4r, will correspond to a vertical transition for which the overlap integral < ;| x, >
is maximal. By inspection of Fig. 3.3, the overlap integral (< ;| x, >) is maximal for
the v =0 — v =4 transition (x, is positive everywhere and y, is strongly positive

~ vertically above the maximum of x;). Transitions from v = 0 to other vibrational levels

of *yr, (e.g., from v = 0 of ¥ to v =3 and v =5 of *,) may occur, but with lower
probability because of the smaller overlap of x; and x, for these vertical transitions. A
possible resulting absorption spectrum showing schematically how the intensities for
an experimental absorption spectrum would vary is shown in Fig. 3.3, above the PE
curves for i, and *v,. The intensities of the transitions are proportional to the values
of the FC overlap integrals, with the v = 0 — v = 4 transition being maximal.

The same general ideas of the FC principle apply to emission, except now the
important overlap is between the x corresponding to v =0 of *V, (the equilibrium
position of the excited state) and the various vibrational levels, x;, of y;. Chapter 4
discusses experimental examples of the FC principle for radiative transitions.
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In Section 3.13, we shall seek quantum intuition concerning transitions involving
electron spins in electronic radiative and radiationless processes. In this case, in
addition to the Franck—Condon factors. for vibrations, we are concerned with the
overlap of two types of spin wave functions (S), the wave functions for singlets
and triplets corresponding to *R. We have seen from the vector model discussed
in Section 2.27 that the wave functions for singlets (with antiparallel spins 1) and
triplets (with parallel spins 11) do not look alike at all! When two spin wave functions
do not look alike, a magnetic perturbation, such as spin—orbit coupling, is required to
distort the initial spin state to make it look like the final spin state and thereby induce a
radiationless transition or a spin-forbidden radiative transition. The discussion of FC
factors on radiative and radiationless transitions described in Section 3.11 are the same
for transitions involving a spin change, but in addition to a good FC factor, transitions
involving a spin change require simultaneously significant spin—orbit coupling.

3.11 The Franck—Condon Principle and
Radiationless Transitions (*R — R + heat)8

The original FC principle stated that there is a preference for “vertical” jumps between
PE curves for the representative point of a molecular system during a radiative
transition. The classical and quantum mechanical ideas behind the FC principle for
radiative transitions can be extended to radiationless transitions. The basic idea is
the same for radiative and radiationless transitions; namely, (1) a small change in the
initial and final nuclear structure and momentum is favored, and (2) energy must be
conserved during the transition. For radiative transitions, energy is conserved during a
transition by the absorption or emission of a photon (Av), which corresponds exactly to
the energy difference between the initial and final states. For a radiationless transition,
the initial and final electronic states must have the same energy and the same nuclear
geometry. In other words, the initial and final states must look alike energetically and
structurally. '

In contrast to the situation for radiative transitions, vertical jumps between PE
curves separated by a large energy gap are improbable because of the need to
conserve energy during a radiationless transition. It is easiest to conserve energy
for radiationless transitions at points for which curves cross or come close together,
since at the crossing points the wave functions [e.g., ¥1(R) and ¥,(*R)] have exactly
the same energy. Now, we can connect the quantum mechanical interpretation of
radiationless transitions in terms of the FC factor (< yy|x, >) to the motion of the
representative point on a PE surface.

Suppose a molecule starts off on an excited PE curve corresponding to the elec-
tronically excited state whose electronic wave function is ¥,(*R) and undergoes a
LU — HO electronic transition to ¥(R). Fig. 3.4 depicts just such a situation. On
the left, the molecule begins in the y,(*R) state, and on the right, the molecule has
Just been converted to the ¥;(R) state. The representative point of v/,(*R), during its
zero-point motion, makes a relatively small-amplitude oscillating trajectory between
points A and B on the excited surface (Fig. 3.4a). But after the transition to ¥,(R)
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Figure 3.4 Visualization of the quantum mechanical basis for a slow rate of
radiationless transitions due to low positive overlap of the vibrational wave functions.

the representative point makes a relatively large-amplitude oscillating trajectory be-
tween points C and D (Fig. 3.4b) because the electronic energy of ¥,(*R) has been
converted into the vibrational energy of v,(R). For a radiationless transition from the
¥, (*R) curve to the ground-state 1//1(R) curve to be possible, energy and momentum
must be conserved.

‘What happens when, in the limiting classical cases, a horizontal jump with conser-
vation of PE occurs (Fig. 3.4a, A — Cor B — D), or a vertical jump with conservation
of geometry (Fig. 3.4b A — E or B — F) occurs? A classical horizontal “jump” from
¥,(*R) to ¥,(R) that conserves energy requires an unlikely abrupt change in nuclear
geometry. The representative point, initially in-v = 0 of ¥, (*R), will be undergoing
a vibration of small amplitude between A and B before and after the horizontal tran-
sition to C or D [at points C and D, the atoms on ¥(R) are momentarily moving
slowly since they are at turning points of a vibration]. However, because the initial
and final states have very different geometries, they do not “look alike” and therefore
the horizontal jump is improbable. A classical vertical jump that conserves the initial
geometry from ¥, (*R) to ¥;(R) will start an abrupt transformation of the representa-
tive point from a very small, mild-amplitude vibration with little KE and momentum
between A and B to a very large-amplitude, high kinetic-energy oscillation between
C and D. The motions of the representative points in ¥, (*R) to ¥;(R) do not look
alike, and therefore the transition is improbable. The vertical jumps A — EorB— F
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are unlikely because, in order to conserve energy, some external energy sink must be
available to suddenly absorb a great deal of energy.

The net result of either a horizontal or vertical jump from ¥, (*R) to ¥(R) is
that the vibration of the molecule will cause either an abrupt change in geometry
(Fig. 3.4a) or an abrupt change in momentum (Fig. 3.4b). Thus, we can conclude that
radiationless transitions between two PE curves that do not come close in energy
are implausible. An abrupt change in the positional or momentum characteristics
of a vibration corresponds to a large change in the organizational energy of the
vibrating system. Classically, transitions requiring such large structural or dynamic
reorganizations are resisted, and therefore implausible. Put in simpler terms, the initial
and final state do not look very much alike in terms of their initial and final kinetic
energies or of their initial and final structures, so a transition between them is slow.

Let us see how the quantum mechanical wave functions for the vibrations deal with
the two transitions shown in Fig. 3.4 for the transition ¥/;(*R) — ¥(R). Suppose the
wave functions x; and x, correspond to the v = 0 and v = 6 vibrations of ¥,(*R) and
¥,(R), respectively. The vibrational wave functions for the initial (i.e., x;, v = 0) and
the final state (i.e., x,, v = 6), which are shown at the top of Fig. 3.4, do not look at
all alike. That is, x, is always positive (no nodes), whereas x, oscillates a number of
times (v = 6, so there are six nodes). The dissimilarities of the two wave functions
immediately lead to the conclusion that the overlap integral (< x;|x, >) will have a
value close to zero because of mathematical cancellation of the two functions. The
poor net overlap is shown schematically in Fig. 3.5 (left).

Now, we consider the situation for which two PE curves come very close in
energy (i.e., they actually intersect). Consider the mathematical form of the vibrational
wave functions x; and x, for the initial and final vibrations shown in Fig. 3.5 for a
radiationless transition, similar to that of Fig. 3.4, in which the two surfaces are far
apart for all values of r (Fig. 3.5 (left), and a radiationless transition in which the two
surfaces come close together and intersect or cross at a specific value of r (Fig. 3.5,
right). Recall that for a radiative or radiationless transition to be probable according
to the FC principle, there must be net positive overlap between these wave functions.

By inspection of the curves in Fig. 3.5 (left), namely, the case for which the two
surfaces involved in the radiationless transition are far apart for all values of r, the
vibrational wave function yx; (positive everywhere, no node) associated with ¥;(*R),
plotted above the classical curve representing the excited state, is drastically different
in form from the vibrational wave function x, (highly oscillating. between positive
and negative values) associated with y-,(R) at the energy where the transition occurs.
Therefore, the mathematical overlap integral of x, and x; (i.e., < x;/x2 >), the net
overlap, will be zero or close to zero, because the initial function ()x;) is positive
everywhere about the point r.q (the equilibrium separation) but the final function (x,)
oscillates between positive and negative values about Teq- The result is an effective
cancellation of the mathematical overlap integral (Fig. 3.5, bottom left). Quantum
intuition tells us, as does the FC principle, that if the overlap integral < y;|x, > is
very small, the probability of the radiationless transition from v¥;(*R) to ¥,(R) will
also be very small. More simply stated, the wave functions x; and x, do not look very
much alike and will be difficult to make look alike through electronic couplings. In
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Figure 3.5 Schematic representation of situations for poor (left) and good (right) net
positive overlap of vibrational wave functions. The value of the integral < x;|x, > as
a function of r is shown at the bottom of the figure.

terms of a selection rule, the transition as shown in Fig. 3.4 is implausible and will
occur at a slow rate.

In Fig. 3.5 (right), there is a specific value of » where PE curve-crossing occurs
between the wave functions *yr; and ¥,. How can visualization of the overlap of
vibrational wave functions provide some quantum insight into the operation of the
FC principle when two PE curves intersect one another? The poor overlap of the
vibrational wave functions x; and x, for a molecule in the lowest vibrational level of
*r; for the noncrossing situation (Fig. 3.5, left) contrasts with the significant overlap
for the curve-crossing situation (Fig. 3.5, right). In both cases, x; corresponds to the
v = 0level of *y; and x, corresponds to the v = 6 level (six nodes in the wave function)
of ¥,.

The amount of electronic energy (A E;,) that must be converted into vibrational
energy and the vibrational quantum number (v) of the state produced by the transition
are the same for both transitions shown in Fig. 3.5. The vibrational overlap integrals
< x1lxo > for the crossing and noncrossing situations are shown at the bottom of
Fig. 3.5. The net overlap for the situation on the left is much less than that for
the situation on the right. The wave function y,(v = 6) undergoes oscillations from
mathematical plus to minus in the regions of space where the wave function x;(v = 0)
is positive, thus causing a poor vibrational overlap integral. Consistent with the
classical FC principle, therefore, quantum intuition states that radiationless transition
for the surface-crossing situation (Fig. 3.5, right) will occur much faster than the
nonsurface crossing, radiationless transition (Fig. 3.5, left) because the vibrational
overlap integral (< y;|x, >) is larger for the situation on the right. In terms of a
selection rule, a radiationless transition when there is no surface is Franck—Condon
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forbidden (i.e., the FC factor < x;|x; >2 ~ (), whereas a radiationless transition at
the surface-crossing (Fig. 3.5, right) is Franck—Condon allowed (i.e., the FC factor
< Xilx; >23£0). v

For some vibrations that distort the energy surface of *R, there are those vibrations
that may be better represented by Fig. 3.5 (left) and other vibrations that may be better
represented by Fig. 3.5 (right). In other words, certain vibronic interactions, Fig. 3.5
(right), can lead to radiationless transitions between states by causing energy surfaces
to intersect, and thereby enhance the FC factors for transition.

In summary, radiationless transitions are most probable when two PE curves for
vibration cross (or come very close to one another), because when this happens, it is
easiest to conserve the energy, motion, and phase of the nuclei during the transition in

the region of the crossing. In other words, in the regions of curve crossings, the wave

functions of *R and R look alike structurally, energetically, and dynamically. It has
been assumed that the vibrational transition, rather than the electronic transition, is rate
determining. This means that the curve crossing shown in Fig. 3.5 actually would not
occur because the electronic states are mixed by the vibration in the region where the
crossing occurs. This case is usually for radiationless electronic transitions involving
no change in spin. Such crossings are more complicated in polyatomic molecules and
are discussed in Chapter 6.

3.12 Radiationless and Radiative Transitions
between Spin States of Different Multiplicity®

The spirit of the paradigm for the selection rules for spin transitions is similar to that
for electronic and vibronic transitions. As before, we postulate that for-all radiative
or radiationless transitions, energy and momentum must be conserved and that tran-
sitions between states of different spin are allowed or plausible only when the initial
and final states look alike in terms of structure and motion.

- Some of the most important examples of spin transitions in organic photochemical
reactions are listed in Scheme 3.2. These transitions are analogous to the general
transitions of Scheme 3.1, except they are for transitions that involve a change of
spin, specifically for the conversion of a singlet state to a triplet state or vice versa.

In Scheme 3.2, we will develop a model that will make it possible to understand
and visualize the mechanisms for all of the spin transitions. The pictorial model uses
the vector model of spin developed in Chapter 2. A precessing vector representing the
spin wave function (S), analogous to the spirit of the pictorial model developed for
vibrating nuclei or orbiting electrons, is employed. Consider the spin wave function of
an initial spin state (S;) and a final spin state (S,). Analogous to the electronic overlap
integral (< |, >) and the vibrational overlap integral (< x;|x3 >), there is a spin
overlap integral < S;|S, >. When there is no spin change during the transition, then
<8,|S, > = 1(e.g., singlet—singlet, triplet-triplet, or doublet-doublet transitions). In
this case, the initial and final spin states look alike in all respects and there is no spin
prohibition on the electronic transition. However, when there is a spin change during
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(@) R(Sp) + v — *R(T))

() *R(Ty) — R(Sy) + hv

(©) *R(T) — R(Sp) + heat

(d) *R(Sy) = R(T;) + heat

(e) 3I(D) — 1(D) and (D) — (D)

Scheme 3.2 Some important transitions involving
intersystem crossing.

the transition, < S;|S, > # 0 (e.g., singlet—triplet transitions) and in the zero-order
approximation, the transition is strictly forbidden.

In first order, transition between singlets and triplets becomes allowed only if an
interaction for mixing spin states is available. In contrast to the mixing of electronic
states, the mixing of spin states requires magnetic interactions, not electrostatic
interactions. At a fundamental level, an electronic transition that involves a change of
spin angular momentum requires some interaction (coupling) with another source
of angular momentum that can both trigger the transition and allow conservation
of the total angular momentum of the two interacting systems during the transition
and provide for the conservation of magnetic energy. For organic molecules, the
most important interaction that couples two spin states and that provides a means of
conserving the total angular momentum of the system is the coupling of the electron
spin with the orbital angular momentum (i.e., spin—orbit coupling).

From Scheme 3.2, the most important radiative transitions involving a spin change
are the spin-forbidden absorption, R(Sy) + kv — *R(T,), and the spin-forbidden
emission (phosphorescence), *R(T;) — R(Sg) + Av. The mostimportant radiationless
transitions for *R involving a spin change are *R(T;) — R(Sy) + heat and *R(S;) —
*R(T;) + heat. Both are intersystem crossings (ISC). Primary photochemical pro-
cesses, such as *R — I(D), may be considered as elementary chemical steps for which
a change of spin is forbidden by the spin selection rules. Thus, when the primary pho-
tochemical process is an *R(T;) — 3I(D) transition, the ISC process 3I(D) — (D)
shown in Scheme 3.2e must occur before products (P) can be formed from 'I(D). This
important 3I(D) — I(D) ISC step is discussed in Section 3.24 and in Chapter 6.

3.13 Spin Dynamics: Classical Precession
of the Angular Momentum Vector®

In Section 2.24, we developed a model representing the electron spin angular momen-
tum (S) as a vector. The spin vector S possesses an associated magnetic moment, fg
(Eq. 2.32). In the absence of any other magnetic fields (i.e., other magnetic moments),
both the S and pg vectors lie motionless in space and possess a magnetic energy (E).
The situation is quite different when there are magnetic fields (i.e., magnetic mo-
ments), H,, that couple with the magnetic moment of the electron spin, ptg. The result
of such a coupling is that the electron spin (and its associated magnetic moment, ftg)
orients itself either in a direction aligned with the coupling field (H,) or in a direction
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