

Assign the electronic absorption spectra of the following ions in water.

Answers

 d^1 Ti³⁺. A ${}^2T_{2g}$ to 2E_g dd transition split because of Jahn-Teller distortion.

 $d^2 V^{3+}$. The complex will have a ${}^{3}T_{1g}$ ground state corresponding to a $t_{2g}{}^{2} e_{g}{}^{0}$ configuration. The first excited state will arise from a $t_{2g}{}^{1} e_{g}{}^{1}$ configuration - the ${}^{3}T_{2g}$ state in the Orgel diagram. This will be the lowest energy transition and is found at about 18,000 cm⁻¹. The Orgel diagram predicts two transitions to ${}^{3}T_{1g}$ and at higher energy to ${}^{3}A_{2g}$, which correspond well with the observed transitions at about 25,500 cm⁻¹ and shoulder at 30,000 cm⁻¹. (The asymmetric shape of the 26,000 cm⁻¹ transition suggests a second transition at higher energy that is not clearly resolved, or that the third transition is not observed.)

d³ Cr³⁺. The ground configuration of t_{2g}^{3} corresponds to a ${}^{4}A_{2g}$ state. From this state, there are two excitations to ${}^{4}T_{1g}$ and ${}^{4}T_{2g}$ possible, fairly close in energy - 17,000 and 24,000 cm⁻¹. There is a third spin-allowed transition at higher energy that is not observed.

d⁴ **Cr**²⁺. The ground state is a ${}^{5}E_{g}$ which can only be excited to the ${}^{5}T_{2g}$, which is observed at about 15,000 cm⁻¹.

 $d^5 \text{ Mn}^{2+}$. No Orgel diagram because there are no spin-allowed dd transitions possible. Looking at the Tanabe-Sugano diagram, there is only one state with a multiplicity of 6 (blue). Therefore, there are no spin-allowed transitions in the visible - the absorbance scale is in the 10^{-2} range, which is indicative of spin-forbidden transitions. These transitions will occur to the multitude of quartet states available (red lines). Transition to the doublet (green) is not observed because it requires movement/spin flip of two electrons. See Tanabe-Sugano diagram below.

d⁶ Fe²⁺. The ⁵D term of the free d⁶ ion (at the origin of the d⁶ Orgel diagram) shows that it splits into ⁵T_{2g} and ⁵E_g states in the presence of a weak octahedral ligand field, such as six waters. The transition at about 10,000 cm⁻¹ is an excitation from the ⁵T_{2g} state to the ⁵E_g. It is split into two peaks because of Jahn-Teller distortions in the ground and excited states.

 $d^8 Ni^{2+}$. There are three triplet excited states in the d^8 Orgel diagram: ${}^3T_{2g}$, ${}^3T_{1g}(F)$ and ${}^3T_{1g}(P)$. Three different excitations are expected, observed at 7500, 15 000, and 25 000 cm⁻¹.

 $d^9 Cu^{2+}$. Since one "hole" in the electronic structure of d^9 is similar to one electron in the d^1 structure. There should be a singlet transition split into two because of the Jahn-Teller effect, as is seen at about 13,000 cm⁻¹.