Chemistry 6330
 Problem Set 1 Answers

1.

(a) T_{d}

(d) $\mathrm{D}_{3 \mathrm{~h}}$
(b) $\mathrm{C}_{3 \mathrm{v}}$
(c) $\mathrm{C}_{2 \mathrm{v}}$
(e) O_{h}
(g) $\mathrm{C}_{2 \mathrm{v}} \mathrm{O}^{\mathrm{C}} \mid \mathrm{C}_{\mathrm{O}}$

(h) $\mathrm{D}_{4 \mathrm{~h}}$
(f) $\mathrm{C}_{4 \mathrm{v}}$
(j) $\mathrm{C}_{2 \mathrm{v}}$
(k) D_{3}

(i) $\mathrm{C}_{3 \mathrm{v}}$

(l) $\mathrm{C}_{2 \mathrm{v}}$
(m) $\mathrm{C}_{2 \mathrm{~h}}$
(n) $\mathrm{D}_{2 \mathrm{~d}}$

(o) $\mathrm{C}_{3 \mathrm{v}}$
(p) C_{s}
(q) $\mathrm{D}_{5 \mathrm{~d}}$

(t) $\mathrm{D}_{3 \mathrm{~h}}$

(u)

(v) $\mathrm{C}_{2 \mathrm{v}}$

(w) $\mathrm{D}_{3 \mathrm{~h}}$

(x)

(y) $\mathrm{D}_{4 \mathrm{~h}}$

(z) $\mathrm{D}_{\infty \mathrm{h}} \mathrm{O}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{O}$
2. (a) $\mathrm{C}_{2}^{\mathrm{y}}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \rightarrow(-\mathrm{a}, \mathrm{b},-\mathrm{c})$
$\mathrm{C}_{2}{ }^{\mathrm{x}}(-\mathrm{a}, \mathrm{b},-\mathrm{c}) \rightarrow(-\mathrm{a},-\mathrm{b}, \mathrm{c})$

$$
\mathrm{C}_{2}{ }^{\mathrm{x}} \mathrm{C}_{2}^{\mathrm{y}} \rightarrow(-\mathrm{a},-\mathrm{b}, \mathrm{c})=\mathrm{C}_{2}^{\mathrm{z}}(\mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

$$
\mathrm{C}_{2}{ }^{\mathrm{x}} \mathrm{C}_{2}^{\mathrm{y}}=\mathrm{C}_{2}^{\mathrm{z}}
$$

(b) $\quad \mathrm{C}_{4}{ }^{\mathrm{z}}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \rightarrow(-\mathrm{b}, \mathrm{a}, \mathrm{c})$
$\mathrm{C}_{2}{ }^{\mathrm{x}}(-\mathrm{b}, \mathrm{a}, \mathrm{c}) \rightarrow(-\mathrm{b},-\mathrm{a},-\mathrm{c})$

$$
\mathrm{C}_{2}{ }^{\mathrm{x}} \mathrm{C}_{4}^{\mathrm{z}}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \rightarrow(-\mathrm{b},-\mathrm{a},-\mathrm{c})
$$

$$
\mathrm{C}_{2}{ }^{\mathrm{x}} \mathrm{C}_{4}^{\mathrm{z}}=\mathrm{C}_{2}^{\mathrm{x}=-\mathrm{y}}
$$

(c) $\quad \sigma_{\mathrm{z}}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \rightarrow(\mathrm{a}, \mathrm{b},-\mathrm{c})$
$\mathrm{i}(\mathrm{a}, \mathrm{b},-\mathrm{c}) \rightarrow(-\mathrm{a},-\mathrm{b}, \mathrm{c})$
$\mathrm{i} \cdot \sigma_{\mathrm{z}}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \rightarrow(-\mathrm{a},-\mathrm{b}, \mathrm{c})=\mathrm{C}_{2}^{\mathrm{z}}(\mathrm{a}, \mathrm{b}, \mathrm{c})$

$$
\mathrm{i} \cdot \sigma_{\mathrm{z}}=\mathrm{C}_{2}^{\mathrm{z}}
$$

(d) $\mathrm{i}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \rightarrow(-\mathrm{a},-\mathrm{b},-\mathrm{c})$
$\mathrm{C}_{4}{ }^{\mathrm{x}} \mathrm{i}(-\mathrm{a},-\mathrm{b},-\mathrm{c}) \rightarrow(-\mathrm{a}, \mathrm{c},-\mathrm{b})$

$$
\mathrm{C}_{4}{ }^{\mathrm{x}} \mathrm{i}=\mathrm{S}_{4}^{3}(\mathrm{x})
$$

(e) $\quad \sigma_{x=y}(a, b, c) \rightarrow(b, a, c)$
$\mathrm{C}_{4}{ }^{\mathrm{x}}(\mathrm{b}, \mathrm{a}, \mathrm{c}) \rightarrow(\mathrm{b},-\mathrm{c}, \mathrm{a})$

$$
\mathrm{C}_{4}{ }^{x} \sigma_{x=y}(a, b, c)(b,-c, a)
$$

This product is unlike any that we discussed in class for it permutes all three coordinates. One way of approaching this problem is to recognize that $\mathrm{C}_{4}{ }^{x}$ and $\sigma_{x=y}$ are both operations of the O_{h} point group. Thus, the product must also be in O_{h} by closure. Consider the C_{3} operations. These do not lie on the coordinate axes; rather, they go through the faces of the octahedron along the lines $x=y=z$, etc:

C_{3} is perpendicular to page

The C_{3} rotation takes $\mathrm{x} \rightarrow \mathrm{y}, \mathrm{y} \rightarrow \mathrm{z}, \mathrm{z} \rightarrow \mathrm{x}$, so the point $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is transformed into (b, c, a) as shown. We are close!

Because we are combining a proper rotation and a reflection, we might expect an improper rotation to result. The S_{6} operations are defined on the same axes as the C_{3} operations, e.g.

This transformation is harder to see (you might want to use a three-dimensional model) but the effect is to permute the labels and to change one sign. We are closer!

We now need the correct S_{6} operation (there are 8 of them.) I think the easiest way to do this is to consider what must happen to points lying on the principal axes. Because we are looking for $(a, b, c) \rightarrow(b,-c, a)$, we see that a point on the x axis $(a, 0,0)$ should be transformed to the z axis $(0,0, a)$. Similarly, $(0, b, 0) \rightarrow(b, 0,0)$ and $(0,0, c) \rightarrow$ should go into ($0,-\mathrm{c}, 0$)

Thus, we see the answer:
$C_{4}{ }^{x} \sigma_{x=y}=S_{6}(x=-y=-z)$

Note: This problem allows me to point out an interesting feature of the O_{h} point group. The 48 operations of O_{h} correspond to taking the point (a, b, c) into all possible permutations of (a, b, c), each proceeded by $a+$ or a-.

Thus:

$$
\begin{gathered}
(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \rightarrow(-\mathrm{a},-\mathrm{b},-\mathrm{c}) \\
(-\mathrm{a},-\mathrm{c},-\mathrm{b}) \\
\cdot \\
\cdot \\
\cdot \\
\text { etc. }
\end{gathered}
$$

There are 6 permutation of (a, b, c) (given by $3!/ 0!$) and $2^{3}=8$ choices of signs for each permutation. The $6 x 8$ possibilities are the 48 operations of O_{h}.

$$
\begin{align*}
& \sigma_{y}(a, b, c) \rightarrow(a,-b, c) \tag{f}\\
& \sigma_{\mathrm{x}}(\mathrm{a},-\mathrm{b}, \mathrm{c}) \rightarrow(-a,-b, c) \\
& \quad \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \rightarrow(-\mathrm{a},-\mathrm{b}, \mathrm{c})=\mathrm{C}_{2}^{\mathrm{z}}(\mathrm{a}, \mathrm{~b}, \mathrm{c})
\end{align*}
$$

Rotation:

In general, the product of two planes generates an axis along their line of intersection.

$\underline{E}=\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
(b) C_{3} (defined through vertices 1 and 7 , with 1 being the positive side of axis)

$$
\underline{\mathrm{C}_{3}}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
4 \\
8 \\
5 \\
2 \\
3 \\
7 \\
6
\end{array}\right] \quad \underline{\mathrm{C}_{3}}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

(c) C_{4} (defined perpendicular to 1-2-3-4 face, ccw rotation)

$$
\underline{\mathrm{C}_{4}}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right] \rightarrow\left[\begin{array}{l}
2 \\
3 \\
4 \\
1 \\
6 \\
7 \\
8 \\
5
\end{array}\right] \quad \underline{\mathrm{C}_{4}}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

(d) i

$$
-\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right] \rightarrow\left[\begin{array}{l}
7 \\
8 \\
5 \\
6 \\
3 \\
4 \\
1 \\
2
\end{array}\right] \quad \underline{\mathrm{i}}=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(e) S_{4} (defined along C_{4})

$$
\underline{\mathrm{S}_{4}}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right] \rightarrow\left[\begin{array}{l}
6 \\
7 \\
8 \\
5 \\
2 \\
3 \\
4 \\
1
\end{array}\right] \quad \underline{\mathrm{S}_{4}}=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(f) S_{6} (defined along C_{3})

$$
\underline{\mathrm{S}_{6}}\left[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right] \rightarrow\left[\begin{array}{l}
7 \\
3 \\
4 \\
8 \\
6 \\
2 \\
1 \\
5
\end{array}\right] \quad \underline{\mathrm{S}_{6}}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

(g) $\sigma_{h}\left(\right.$ perpendicular to $\left.\mathrm{C}_{4}\right)$

$$
\underline{\sigma_{\mathrm{h}}}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right] \rightarrow\left[\begin{array}{l}
5 \\
6 \\
7 \\
8 \\
1 \\
2 \\
3 \\
4
\end{array}\right] \quad \quad \underline{\sigma_{\mathrm{h}}}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(h) $\sigma_{d}($ defined by vertices $1,3,5,7)$

- 7 -

$$
\underline{\sigma_{\mathrm{d}}}\left[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right] \rightarrow\left[\begin{array}{c}
1 \\
4 \\
3 \\
2 \\
5 \\
8 \\
7 \\
6
\end{array}\right] \quad \sigma_{\mathrm{d}}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

