Chemistry 6330 Problem Set 1 Answers

2. (a)
$$C_2^y(a, b, c) \rightarrow (-a, b, -c)$$

 $C_2^x(-a, b, -c) \rightarrow (-a, -b, c)$
 $C_2^x C_2^y \rightarrow (-a, -b, c) = C_2^z(a, b, c)$

(b)
$$C_4^z (a, b, c) \to (-b, a, c)$$

 $C_2^x (-b, a, c) \to (-b, -a, -c)$
 $C_2^x C_4^z (a, b, c) \to (-b, -a, -c)$

(c)
$$\sigma_{z}(a, b, c) \rightarrow (a, b, -c)$$

 $i(a, b, -c) \rightarrow (-a, -b, c)$
 $i \cdot \sigma_{z}(a, b, c) \rightarrow (-a, -b, c) = C_{2}^{z}(a, b, c) \square \square \square$
 $\circ^{P''}$
 $i \cdot \sigma_{z} = C_{2}^{z}$
 $\bullet^{P'}$

(d)
$$i(a, b, c) \rightarrow (-a, -b, -c)$$

 $C_4^x i(-a, -b, -c) \rightarrow (-a, c, -b)$

$$C_4^x i = S_4^3(x)$$

(e) $\sigma_{x=y}(a, b, c) \rightarrow (b, a, c)$ $C_{4^{x}}(b, a, c) \rightarrow (b, -c, a)$ $C_{4^{x}} \sigma_{x=y}(a, b, c) (b, -c, a)$

This product is unlike any that we discussed in class <u>for it permutes all three c</u>oordinates. One way of approaching this problem is to recognize that C_4^x and $\sigma_{x=y}$ are both operations of the O_h point group. Thus, the product must also be in O_h by closure. Consider the C₃ operations. These do not lie on the coordinate axes; rather, they go through the faces of the octahedron along the lines x=y=z, etc:

The C₃ rotation takes $x \rightarrow y, y \rightarrow z, z \rightarrow x$, so the point (a, b, c) is transformed into (b, c, a) as shown. We are close!

Because we are combining a proper rotation and a reflection, we might expect an improper rotation to result. The S_6 operations are defined on the same axes as the C_3 operations, e.g.

This transformation is harder to see (you might want to use a three-dimensional model) but the effect is to permute the labels <u>and to change one sign</u>. We are closer! We now need the correct S₆ operation (there are 8 of them.) I think the easiest way to do this is to consider what must happen to points lying on the principal axes. Because we are looking for (a, b, c) \rightarrow (b, -c, a), we see that a point on the x axis (a, 0, 0) should be transformed to the z axis (0, 0, a). Similarly, (0, b, 0) \rightarrow (b, 0, 0) and (0, 0, c) \rightarrow should go into (0, -c, 0)

Thus, we see the answer:

 $C_4{}^x \sigma_{x=y} = S_6(x = \textbf{-}y = \textbf{-}z)$

Note: This problem allows me to point out an interesting feature of the O_h point group. The 48 operations of O_h correspond to taking the point (a, b, c) into all possible permutations of (a, b, c), each proceeded by a +or a -.

$$(a, b, c) \rightarrow (-a, -b, -c)$$

(-a, -c, -b)
.
.
.
.
.
.
.

There are 6 permutation of (a, b, c) (given by 3!/0!) and $2^3 = 8$ choices of signs for each permutation. The 6x8 possibilities are the 48 operations of O_h .

(f)
$$\sigma_y(a, b, c) \rightarrow (a, -b, c)$$

 $\sigma_x(a, -b, c) \rightarrow (-a, -b, c)$
 $\sigma_x \sigma_y(a, b, c) \rightarrow (-a, -b, c) = C_2^z(a, b, c)$

Rotation:

In general, the product of two planes generates an axis along their line of intersection.

(b) C₃ (defined through vertices 1 and 7, with 1 being the positive side of axis)

(c) C₄ (defined perpendicular to 1-2-3-4 face, ccw rotation)

(e) S₄ (defined along C₄)

(f) S₆ (defined along C₃)

(g) σ_h (perpendicular to C₄)