Chemistry 6330 Winter Quarter 2018 ## Midterm Exam | Name: | |--------------------------| | | | | | Question 1: pts / 15 pts | | Question 2: pts / 10 pts | | Question 3: pts / 20 pts | | Question 4: pts / 15 pts | | Question 5: pts / 25 pts | | Question 6: pts / 15 pts | | | | TOTAL: PTS / 100 PTS | - (1) [15 pts] Consider a mathematical group. - (a) [8 pts] List the properties that define a group. (b) [3 pts] What is a subgroup? (c) [4 pts] What is a class? | Name: | | |-------|--| |-------|--| - (2) [10 pts] Suppose that a S₄ rotation about the y-axis operates on a general Cartesian point (a,b,c). - (a) [7 pts] What is the Cartesian coordinate of the transformed point? Show your work. (b) [3 pts] What is the general 3x3 matrix for a reflection through a plane that contains the z-axis and the line x=y? | Name: | | | |-------|------|------| | |
 |
 | | (3) | [20 pts] For the following products of symmetry operations, determine (i) a single symmetry operation | |-----|---| | | that is equal to the product and (ii) if the symmetry operations commute. | (a) [10 pts] $C_2^z \cdot \sigma_{x=y}$ (i) _____ (ii) Commute?_____ (b) [10 pts] $C_4^x \cdot i$ (ii) Commute? _____ (4) [15 pts] A blank character table for the D_{2d} symmetry point group is shown below. Use your knowledge of the properties of groups and representations to generate the five irreducible representations A₁, A₂, B₁, B₂, and E. Show your work (i.e. explain how you arrived at answers)! | D _{2d} | Е | 2S ₄ | C ₂ | 2 C ₂ | $2\sigma_{\rm d}$ | | | |-----------------|---|-----------------|----------------|------------------|-------------------|------------------|------------------| | A_1 | | | | | | | $x^2 + y^2, z^2$ | | A ₂ | | | | | | R _z | | | B_1 | | | | | | | $x^2 - y^2$ | | B ₂ | | | | | | z | xy | | Е | | | | | | $(x,y)(R_x,R_y)$ | (xz,yz) | | Name: | | |-------|------| | |
 | (5) [25 pts] Consider ethene drawn below. (a) [6 pts] Identify all the symmetry elements and symmetry operations of the molecule (it may help to draw them on the molecule) - (b) [4 pts] What is the point group of ethene? - (c) [10 pts] Write the representation for transposing the four H atoms in ethene. (d) [5 pts] Is the representation in part (c) reducible or irreducible? Explain your answer. | Name: | | |-------|--| |-------|--| - (6) [15 pts] The following questions pertain the D_{4h} point group (character table included). - (a) [10 pts] Find the direct product $E_u \cdot E_u$ and reduce to a sum of irreducible representations. (b) [5 pts] Show that the irreducible representations $\boldsymbol{B_{2g}}$ and $\boldsymbol{E_g}$ are orthogonal to one another. Name: ## **Selected Character Tables** | C _{2h} | Е | C_2 | i | $\sigma_{ m h}$ | | | |---------------------|---|-------|----|-----------------|----------------|---------------------| | Ag | 1 | 1 | 1 | 1 | R _z | x^2, y^2, z^2, xy | | B_g | 1 | -1 | 1 | -1 | R_{x}, R_{y} | xz, yz | | $A_{\rm u}^{\rm o}$ | 1 | 1 | -1 | -1 | z | | | B_{u} | 1 | -1 | -1 | 1 | x, y | | | D ₂ | Е | C ₂ (z) | $C_2(y)$ | $C_2(x)$ | _ | | |----------------|---|--------------------|----------|----------|-------------------|-----------------| | Α | 1 | 1 | 1 | 1 | | x^2, y^2, z^2 | | B_1 | 1 | 1 | ·· -1 | -1 | z, R _z | xy | | B_2 | 1 | -1 | 1 | -1 | y, R _y | xz | | B_3 | 1 | -1 | -1 | 1 | x, R_x | yz | | D _{2h} | Е | $C_2(z)$ | $C_2(y)$ | $C_2(x)$ | i | σ(xy) | σ(xz) | σ(yz) | | | |-----------------|---|----------|----------|----------|----|-------|-------|-------|----------------|-----------------| | Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | x^2, y^2, z^2 | | B_{lg} | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | R _z | xy | | B _{2g} | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | R _y | xz | | B_{3g} | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | R _x | yz | | A _u | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | | | | Blu | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | z | | | B _{2u} | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | у | | | B_{3u} | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | x | | | D _{4h} | Е | 2C ₄ | C_2 | 2C ₂ ′ | 2C2′′ | i | 2S ₄ | σ_{h} | $2\sigma_{\rm v}$ | $2\sigma_{\rm d}$ | | | |-----------------|---|-----------------|-------|-------------------|-------|----|------------------------|--------------|-------------------|-------------------|----------------|----------------------| | Alg | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | $x^{2}+y^{2}, z^{2}$ | | A _{2g} | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 🚎 | -1 | R _z | | | B_{lg} | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | | x^2+y^2 | | B _{2g} | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | | xy | | Eg | 2 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | (R_x,R_y) | (xz,yz) | | A _{lu} | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | | | | A _{2u} | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | z | | | B_{1u} | 1 | -1 | 1 ** | 1 | -1 | -1 | 1 | -1 | -1 | 1 | | | | B_{2u} | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | | | | E_{u} | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | (x,y) | | | Name: | | | |------------|------|--| | 1 10411141 |
 | | ADDITIONAL BLANK PAPER FOR WORK - Do not turn in final answers on this sheet.