Chemistry 6330 Winter Quarter 2018

Midterm Exam

Name:
Question 1: pts / 15 pts
Question 2: pts / 10 pts
Question 3: pts / 20 pts
Question 4: pts / 15 pts
Question 5: pts / 25 pts
Question 6: pts / 15 pts
TOTAL: PTS / 100 PTS

- (1) [15 pts] Consider a mathematical group.
 - (a) [8 pts] List the properties that define a group.

(b) [3 pts] What is a subgroup?

(c) [4 pts] What is a class?

Name:	
-------	--

- (2) [10 pts] Suppose that a S₄ rotation about the y-axis operates on a general Cartesian point (a,b,c).
- (a) [7 pts] What is the Cartesian coordinate of the transformed point? Show your work.

(b) [3 pts] What is the general 3x3 matrix for a reflection through a plane that contains the z-axis and the line x=y?

Name:		

(3)	[20 pts] For the following products of symmetry operations, determine (i) a single symmetry operation
	that is equal to the product and (ii) if the symmetry operations commute.

(a) [10 pts] $C_2^z \cdot \sigma_{x=y}$

(i) _____

(ii) Commute?_____

(b) [10 pts] $C_4^x \cdot i$

(ii) Commute? _____

(4) [15 pts] A blank character table for the D_{2d} symmetry point group is shown below. Use your knowledge of the properties of groups and representations to generate the five irreducible representations A₁, A₂, B₁, B₂, and E. Show your work (i.e. explain how you arrived at answers)!

D _{2d}	Е	2S ₄	C ₂	2 C ₂	$2\sigma_{\rm d}$		
A_1							$x^2 + y^2, z^2$
A ₂						R _z	
B_1							$x^2 - y^2$
B ₂						z	xy
Е						$(x,y)(R_x,R_y)$	(xz,yz)

Name:	

(5) [25 pts] Consider ethene drawn below.

(a) [6 pts] Identify all the symmetry elements and symmetry operations of the molecule (it may help to draw them on the molecule)

- (b) [4 pts] What is the point group of ethene?
- (c) [10 pts] Write the representation for transposing the four H atoms in ethene.

(d) [5 pts] Is the representation in part (c) reducible or irreducible? Explain your answer.

Name:	
-------	--

- (6) [15 pts] The following questions pertain the D_{4h} point group (character table included).
 - (a) [10 pts] Find the direct product $E_u \cdot E_u$ and reduce to a sum of irreducible representations.

(b) [5 pts] Show that the irreducible representations $\boldsymbol{B_{2g}}$ and $\boldsymbol{E_g}$ are orthogonal to one another.

Name:

Selected Character Tables

C _{2h}	Е	C_2	i	$\sigma_{ m h}$		
Ag	1	1	1	1	R _z	x^2, y^2, z^2, xy
B_g	1	-1	1	-1	R_{x}, R_{y}	xz, yz
$A_{\rm u}^{\rm o}$	1	1	-1	-1	z	
B_{u}	1	-1	-1	1	x, y	

D ₂	Е	C ₂ (z)	$C_2(y)$	$C_2(x)$	_	
Α	1	1	1	1		x^2, y^2, z^2
B_1	1	1	·· -1	-1	z, R _z	xy
B_2	1	-1	1	-1	y, R _y	xz
B_3	1	-1	-1	1	x, R_x	yz

D _{2h}	Е	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	σ(xy)	σ(xz)	σ(yz)		
Ag	1	1	1	1	1	1	1	1		x^2, y^2, z^2
B_{lg}	1	1	-1	-1	1	1	-1	-1	R _z	xy
B _{2g}	1	-1	1	-1	1	-1	1	-1	R _y	xz
B_{3g}	1	-1	-1	1	1	-1	-1	1	R _x	yz
A _u	1	1	1	1	-1	-1	-1	-1		
Blu	1	1	-1	-1	-1	-1	1	1	z	
B _{2u}	1	-1	1	-1	-1	1	-1	1	у	
B_{3u}	1	-1	-1	1	-1	1	1	-1	x	

D _{4h}	Е	2C ₄	C_2	2C ₂ ′	2C2′′	i	2S ₄	σ_{h}	$2\sigma_{\rm v}$	$2\sigma_{\rm d}$		
Alg	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A _{2g}	1	1	1	-1	-1	1	1	1	-1 🚎	-1	R _z	
B_{lg}	1	-1	1	1	-1	1	-1	1	1	-1		x^2+y^2
B _{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy
Eg	2	0	-2	0	0	2	0	-2	0	0	(R_x,R_y)	(xz,yz)
A _{lu}	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	z	
B_{1u}	1	-1	1 **	1	-1	-1	1	-1	-1	1		
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
E_{u}	2	0	-2	0	0	-2	0	2	0	0	(x,y)	

Name:		
1 10411141	 	

ADDITIONAL BLANK PAPER FOR WORK - Do not turn in final answers on this sheet.