Chemistry 6330

Problem Set 5

(1) Bis(cyclobutadiene)nickel consists of a Ni atom sandwiched between two planar cyclobutadiene ligands. In this complex (shown below), the metal orbitals overlap with the $p\pi$ molecular orbitals of cyclobutadiene (the Huckel $p\pi$ MO's of cyclobutadiene are shown in Chapter 7 and you should have worked them out in Problem Set 5). Assume that the complex is reduced by two electrons to yield the 2- ion.

- (a) Derive the symmetries of the orbitals resulting from the eight linear combinations of the cyclobutadiene $p\pi$ Huckel orbitals. Label each orbital according to the irreducible representation for which it forms a basis.
- (b) Indicate which Nickel orbitals are of the correct symmetry to overlap with the ligand orbitals
- (c) Decide which interactions are likely moderate, strong, or weak and construct the MO diagram for the nickel complex.
- (d) Derive the symmetries of the ground state, dipole moment operator, and the two lowest-lying excited states. Assign the allowed and forbidden electronic transitions.
- (e) What type of transitions are these? What intensities (ϵ) would you expect?
- (2) The square planar geometry is ubiquitous for transition metals with d⁸ electronic configuration. By following the procedure outlined in lecture, derive the following MO diagrams for square planar ML₄ complexes.
 - (a) σ -donor ligands
 - (b) π -acceptor ligands
 - (c) π -donor ligands
 - (d) Assign the low-lying allowed transitions you would expect for the complexes in (a) (c)
- (3) Consider the fictitious dinuclear hydride complex $Mn_2H_8^{2-}$, which we will assume consists of two face-to-face square planar MnH_4^{-} fragments.
 - (a) Using the Mn 3d, 4s, and 4p AO's and the SALCs of four H 1s orbitals, construct a qualitative MO diagram for square planar (D_{4h}) MnH₄⁻.
 - (b) One of the H SALCs can interact with two different Mn AOs. Which interaction should be stronger? Why?
 - (c) In order to describe the Mn-Mn bonding, we will "throw out" those Mn AOs that are strongly destabilized by interaction with the H atoms. Which orbitals do you think should be discarded?
 - (d) Assume that the $Mn_2H_8^{2-}$ ion is eclipsed (D_{4h}) and has very short Mn-Mn distance. By taking the sums and differences of the orbitals that are left on the Mn atoms, determine which irreducible reps are spanned by the Mn-Mn bonding and antibonding orbitals. Construct a qualitative MO diagram for the Mn-Mn bonding. What is the Mn-Mn bond order?
 - (e) Repeat part (d) under staggered (D_{4d}) geometry. Does the Mn-Mn bond order change? Would you expect staggered Mn₂H₈²⁻ to be diamagnetic or paramagnetic?