Chemistry 6330

Problem Set 5 Answer Key
(a)

Remember that for cyclobutadiene (from PS5) $\Gamma_{p \pi}=A_{2 u}+B_{2 u}+E_{u}$

$$
\begin{array}{cr}
\Psi_{1}\left(a_{2 u}\right)=\frac{1}{2}\left[\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}\right] & \Psi_{2}\left(b_{2 u}\right)=\frac{1}{2}\left[\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}\right] \\
\Psi_{3}\left(e_{u}\right)=\frac{\sqrt{2}}{2}\left[\phi_{1}-\phi_{3}\right] & \Psi_{4}\left(e_{u}\right)=\frac{\sqrt{2}}{2}\left[\phi_{4}-\phi_{2}\right]
\end{array}
$$

If we allow these orbitals to interact with each other, this will give us the orbitals for the bis(cyclobutadienyl) fragment of the molecule above.

$A_{1 g}$

$A_{2 u}$

(b)
$A_{1 g} \Rightarrow s, d z^{2}$
$B_{1 g} \Rightarrow d x^{2}-y^{2}$
$E_{u} \quad \Rightarrow \quad\left(p_{x}, p_{y}\right)$
$\mathrm{A}_{2 \mathrm{u}} \Rightarrow \mathrm{p}_{\mathrm{z}}$
$B_{2 u} \Rightarrow$ None
$\mathrm{E}_{\mathrm{g}} \Rightarrow(\mathrm{dxz}, \mathrm{dyz})$
(c)

Interaction	Strength	Comments
$\mathrm{A}_{1 g}$ with s	Moderate	s is small and spherical (not
much directionality)		
$\mathrm{A}_{1 g}$ with dz^{2}	Strong	Well directed for overlap
$\mathrm{A}_{2 \mathrm{l}}$ with p_{z}	Strong	Well directed for overlap
$\mathrm{B}_{1 g}$ with $\mathrm{dx}^{2}-\mathrm{y}^{2}$	Strong	Not as well directed but overlaps with all 8 p orbitals
E_{u} with $\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right)$	Moderate	Not as well directed at the $\mathrm{p}-$
E_{g} with $(\mathrm{dxz}, \mathrm{dyz})$	Strong	π orbitals

$\mathrm{Ni}^{2+}-\mathrm{d}^{8}$
$[\mathrm{Ni}(\text { cyclobutadiene })]^{2-}$
$2 \times(\text { cyclobutadiene })^{2-}$
(d)

Since all of the orbitals are completely filled or completely empty, the symmetry of the ground state would be ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$, the totally symmetric representation for the $\mathrm{D}_{4 \mathrm{~h}}$ point group.

Examination of the $D_{4 \mathrm{~h}}$ character table shows the dipole moment operator has symmetries of $A_{2 u}(z)$ and $E_{u}(x, y)$.

The two lowest lying allowed excited states would be:

$$
\begin{array}{lr}
\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{3}\left(a_{1 g}\right)^{0}\left(b_{2 u}\right)^{1} & { }^{1} \mathrm{E}_{\mathrm{u}} \\
\left(b_{2 g}\right)^{1}\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{0}\left(b_{2 u}\right)^{1} & { }^{1} \mathrm{~A}_{1 \mathrm{u}}
\end{array}
$$

The electronic transitions would be:

$$
\begin{array}{cc}
\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{0}\left(b_{2 u}\right)^{0} \rightarrow\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{3}\left(a_{1 g}\right)^{0}\left(b_{2 u}\right)^{1} & { }^{1} \mathrm{~A}_{1 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{u}} \\
\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{0}\left(b_{2 u}\right)^{0} \rightarrow\left(b_{2 g}\right)^{1}\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{0}\left(b_{2 u}\right)^{1} & { }^{1} \mathrm{~A}_{1 g} \rightarrow{ }^{1} \mathrm{~A}_{1 \mathrm{u}} \\
\Gamma_{G S} \times \Gamma_{\mu} \times \Gamma_{E S} \Rightarrow \text { Must contain } \mathrm{A}_{1 \mathrm{~g}} & \\
\mathrm{~A}_{1 g} \times \mathrm{A}_{2 \mathrm{u}} \times \mathrm{E}_{\mathrm{u}}=\mathrm{E}_{g} & \\
\mathrm{~A}_{1 g} \times \mathrm{E}_{u} \times \mathrm{E}_{u}=\mathrm{A}_{1 g}+\mathrm{A}_{2 g}+\mathrm{B}_{1 g}+\mathrm{B}_{2 g} & \text { Allowed } \\
\mathrm{A}_{1 g} \times \mathrm{A}_{2 \mathrm{u}} \times \mathrm{A}_{1 \mathrm{u}}=\mathrm{A}_{2 g} & \\
\mathrm{~A}_{1 g} \times \mathrm{E}_{u} \times \mathrm{A}_{2 \mathrm{u}}=\mathrm{E}_{g} &
\end{array}
$$

(e) These allowed transitions are MLCT transitions and would have ε values in the range of $5,000-50,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. The possible d-d transitions are all forbidden.

$\mathrm{D}_{4 \mathrm{~h}}$	E	$2 \mathrm{C}_{4}$	C_{2}	$2 \mathrm{C}_{2}{ }^{\prime}$	$2 \mathrm{C}_{2^{\prime \prime}}$	i	$2 \mathrm{~S}_{4}$	σ_{h}	$2 \sigma_{\mathrm{v}}$	$2 \sigma_{\mathrm{d}}$
$\Gamma_{\mathrm{p} \pi}$	8	0	0	-4	0	0	0	0	0	0
$\Gamma \sigma$	4	0	0	2	0	0	0	4	2	0
$\Gamma_{\mathrm{p} \pi}=\mathrm{A}_{2 \mathrm{~g}}+\mathrm{B}_{2 \mathrm{~g}}+\mathrm{E}_{\mathrm{g}}+\mathrm{A}_{2 \mathrm{u}}+\mathrm{B}_{2 \mathrm{u}}+\mathrm{E}_{\mathrm{u}}$										
$\Gamma \sigma=\mathrm{A}_{1 \mathrm{~g}}+\mathrm{B}_{1 \mathrm{~g}}+\mathrm{E}_{\mathrm{u}}$										

Metal orbital symmetries:
$\mathrm{A}_{1 \mathrm{~g}}: \mathrm{s}, \mathrm{dz}{ }^{2}$
$\mathrm{B}_{1 \mathrm{~g}}: \mathrm{dx}^{2}-\mathrm{y}^{2}$
$\mathrm{B}_{2 \mathrm{~g}}$: dxy
$E_{g}:(d x y, d y z)$
$A_{2 u}: p_{z}$
$E_{u}:\left(p_{x}, p_{y}\right)$

Ligand SALC's:

$\sigma:$

$$
\begin{gathered}
\Psi\left(a_{1 g}\right)=\frac{1}{2}\left[\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right] \\
\Psi\left(b_{1 g}\right)=\frac{1}{2}\left[\sigma_{1}-\sigma_{2}+\sigma_{3}-\sigma_{4}\right] \\
\Psi\left(e_{u}^{(a)}\right)=\frac{1}{\sqrt{2}}\left[\sigma_{1}-\sigma_{3}\right] \\
\Psi\left(e_{u}^{(b)}\right)=\frac{1}{\sqrt{2}}\left[\sigma_{2}-\sigma_{4}\right]
\end{gathered}
$$

$\pi:$

$$
\begin{gathered}
\Psi\left(a_{2 g}\right)=\frac{1}{2}\left[\mathrm{p}_{x}^{1}+\mathrm{p}_{x}^{2}+\mathrm{p}_{x}^{3}+\mathrm{p}_{x}^{4}\right] \\
\Psi\left(a_{2 u}\right)=\frac{1}{2}\left[\mathrm{p}_{y}^{1}+\mathrm{p}_{y}^{2}+\mathrm{p}_{y}^{3}+\mathrm{p}_{y}^{4}\right] \\
\Psi\left(b_{2 g}\right)=\frac{1}{2}\left[\mathrm{p}_{x}^{1}-\mathrm{p}_{x}^{2}+\mathrm{p}_{x}^{3}-\mathrm{p}_{x}^{4}\right] \\
\Psi\left(b_{2 u}\right)=\frac{1}{2}\left[\mathrm{p}_{y}^{1}-\mathrm{p}_{y}^{2}+\mathrm{p}_{y}^{3}-\mathrm{p}_{x}^{4}\right] \\
\Psi\left(e_{u}^{(a)}\right)=\frac{1}{\sqrt{2}}\left[\mathrm{p}_{x}^{1}-\mathrm{p}_{x}^{3}\right] \\
\Psi\left(e_{u}^{(b)}\right)=\frac{1}{\sqrt{2}}\left[\mathrm{p}_{x}^{2}-\mathrm{p}_{x}^{4}\right] \\
\Psi\left(e_{g}^{(a)}\right)=\frac{1}{\sqrt{2}}\left[\mathrm{p}_{y}^{1}-\mathrm{p}_{y}^{3}\right] \\
\Psi\left(e_{g}^{(b)}\right)=\frac{1}{\sqrt{2}}\left[\mathrm{p}_{y}^{2}-\mathrm{p}_{y}^{4}\right]
\end{gathered}
$$

(a) σ-only MO diagram

Metal orbitals
Ligand orbitals

There are two possible types of interactions involving these orbitals:
$\mathrm{a}_{1 \mathrm{~g}}: \mathrm{dz}^{2}+4$ ligands
This is a very weak overlap

$b_{1 g}: d x^{2}-y^{2}+4$ ligands
This is very good overlap

(b) π-acceptor MO diagram:

Metal orbitals Ligand orbitals

s

d

σ
(c) π-donor MO diagram:

Metal orbitals
Ligand orbitals

S

(d)
σ-only MO diagram:
Once again, under $D_{4 h}$ symmetry the dipole moment operator has symmetries of $A_{2 u}$ and E_{u}. Since the ground state has $A_{1 g}$ symmetry, the excited state must have $A_{2 u}$ or E_{u} symmetry for the transition to be allowed.

There are several possible low lying allowed transitions: $\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0} \rightarrow\left(a_{1 g}\right)^{1}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{1}$ (Excited state has Eu symmetry) $\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0}\left(e_{u}\right)^{0} \rightarrow\left(a_{1 g}\right)^{1}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0}\left(e_{u}\right)^{1} \quad$ (Excited state has Eu symmetry)
$\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0} \rightarrow\left(e_{g}\right)^{3}\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{1}$ (Excited state symmetry includes $\mathrm{A}_{2 u}$)
$\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0}\left(e_{u}\right)^{0} \rightarrow\left(e_{g}\right)^{3}\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0}\left(e_{u}\right)^{1}$ (Excited state symmetry includes $\mathrm{A}_{2 u}$)

These are all metal-centered transitions ($\mathrm{d} \rightarrow \mathrm{p}$), meaning that the ε values will be around $1,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

π-acceptor MO diagram:

The ground state of this molecule is still A_{19} and the dipole moment operator still has $\mathrm{A}_{2 u}$ and E_{u} symmetry. Now however, there are the ligand π^{*} based orbitals which can be involved in the transitions. There are several possible low lying transitions. These include the same $4 d-p$ metal based transitions discussed in the σ-only case. There is also now the possibility of the allowed $d-\pi^{*}$ transitions that would have an expected ε value of around $5,000-50,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. These include:
$\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0} \ldots\left(a_{2 u}\left(\pi^{*}\right)\right)^{0} \rightarrow\left(a_{1 g}\right)^{1}\left(b_{1 g}\right)^{0} \ldots\left(a_{2 u}\left(\pi^{*}\right)\right)^{1}\left(E S=A_{2 u}\right)$
$\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0} \ldots\left(e_{u}\left(\pi^{*}\right)\right)^{0} \rightarrow\left(a_{1 g}\right)^{1}\left(b_{1 g}\right)^{0} \ldots\left(e_{u}\left(\pi^{*}\right)\right)^{1}\left(\right.$ ES $\left.=\mathrm{E}_{\mathrm{u}}\right)$
$\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0} \ldots\left(a_{2 u}\left(\pi^{*}\right)\right)^{0} \rightarrow\left(e_{g}\right)^{3}\left(a_{1 g}\right)^{1}\left(b_{1 g}\right)^{0} \ldots\left(a_{2 u}\left(\pi^{*}\right)\right)^{1}(\mathrm{ES}=\mathrm{E} \mathrm{u})$
$\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0} \ldots\left(e_{u}\left(\pi^{*}\right)\right)^{0} \rightarrow\left(e_{g}\right)^{3}\left(a_{1 g}\right)^{1}\left(b_{1 g}\right)^{0} \ldots\left(e_{u}\left(\pi^{*}\right)\right)^{1}\left(\right.$ ES includes $\left.A_{2 u}\right)$
$\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{2}\left(b_{1 g}\right)^{0} \ldots\left(e_{u}\left(\pi^{*}\right)\right)^{0} \rightarrow\left(b_{2 g}\right)^{1}\left(e_{g}\right)^{4}\left(a_{1 g}\right)^{1}\left(b_{1 g}\right)^{0} \ldots\left(e_{u}\left(\pi^{*}\right)\right)^{1}\left(E S=E_{u}\right)$
π-donor MO diagram:
Once again there are several metal-centered transitions possible. These would include:
$\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0} \rightarrow\left(e_{g}\right)^{3}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{1}\left(E S=E_{u}\right)$
$\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0}\left(e_{u}\right)^{0} \rightarrow\left(e_{g}\right)^{3}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0}\left(e_{u}\right)^{1}$ (ES includes A$A_{2 u}$)
$\left(a_{1 g}\right)^{2}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0} \rightarrow\left(a_{1 g}\right)^{1}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{1}$ (ES $\left.=\mathrm{A}_{2 u}\right)$ $\left(a_{1 g}\right)^{2}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0} \rightarrow\left(a_{1 g}\right)^{1}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{1}\left(\right.$ ES $\left.=A_{2 u}\right)$
$\left(a_{1 g}\right)^{2}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{0}\left(e_{u}\right)^{0} \rightarrow\left(a_{1 g}\right)^{1}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0}\left(a_{2 u}\right)^{1}\left(e_{u}\right)^{1}$
($\mathrm{ES}=\mathrm{E}_{\mathrm{u}}$)
Now there are also several possible ligand-to-metal charge-transfer transitions. These allowed transitions would be expected to have ε-values around $5,000-50,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. They include:
$\left(a_{2 g}\right)^{2}\left(b_{2 u}\right)^{2}\left(a_{1 g}\right)^{2}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0} \rightarrow\left(a_{2 g}\right)^{2}\left(b_{2 u}\right)^{1}\left(a_{1 g}\right)^{2}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{1}\left(E S=A_{2 u}\right)$
$\left(a_{2 u}\right)^{2}\left(a_{2 g}\right)^{2}\left(b_{2 u}\right)^{2}\left(a_{1 g}\right)^{2}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0} \rightarrow\left(a_{2 u}\right)^{1}\left(a_{2 g}\right)^{2}\left(b_{2 u}\right)^{2}\left(a_{1 g}\right)^{2}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{1}$ (ES = $\mathrm{A}_{2 \mathrm{u}}$)
$\left(e_{u}\right)^{4}\left(a_{2 u}\right)^{2}\left(a_{2 g}\right)^{2}\left(b_{2 u}\right)^{2}\left(a_{1 g}\right)^{2}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{0} \rightarrow\left(e_{u}\right)^{3}\left(a_{2 u}\right)^{2}\left(a_{2 g}\right)^{2}\left(b_{2 u}\right)^{2}\left(a_{1 g}\right)^{2}\left(b_{2 g}\right)^{2}\left(e_{g}\right)^{4}\left(b_{1 g}\right)^{0}\left(a_{1 g}\right)^{1}$ (ES = Eu)
(3) (a)

Under $\mathrm{D}_{4 \mathrm{~h}}$ Symmetry:

Mn orbitals:

$$
\begin{aligned}
& 3 d \rightarrow A_{1 g}+B_{1 g}+B_{2 g}+E_{g} \\
& 4 s \rightarrow A_{1 g} \\
& 4 p \rightarrow A_{2 u}+E_{u}
\end{aligned}
$$

D4h	E	$2 \mathrm{C}_{4}$	C_{2}	$2 \mathrm{C}_{2}{ }^{\prime}$	$2 \mathrm{C}^{\prime \prime}{ }^{\prime \prime}$	i	$2 S_{4}$	$\sigma \mathrm{h}$	$2 \sigma_{v}$	$2 \sigma_{d}$
$\Gamma(\mathrm{H} 1 \mathrm{~s})$	4	0	0	2	0	0	0	4	2	0

Because H bonded to metal atoms is assigned a formal oxidation state of (-1), we will assume the H 1s orbitals lie lower in energy than the Mn 3d orbitals. The MO diagram is then straightforward.

*Note that the strongest Mn-H interactions are in the $\mathrm{b}_{1 g}$ orbitals, which are the bonding and antibonding interactions between the $\mathrm{H} 1 \mathrm{~s} \mathrm{~b}_{1 \mathrm{~g}}$ SALC and the $\mathrm{Mn} 3 \mathrm{dx}^{2}-\mathrm{y}^{2}$ orbital.

Antibonding b1g orbital

The metal $\mathrm{a}_{1 \mathrm{~g}} 3 \mathrm{dz}^{2}$ orbital is destabilized slightly because of poor overlap - the H 1 s orbitals must overlap with the torus (or "doughnut") of the dz^{2} orbital.
(b) As discussed above, the overlap between the H 1s a $\mathrm{a}_{1 \mathrm{~g}}$ SALC and the 3dz ${ }^{2}$ metal orbital is poor. The other overlap between the $\mathrm{a}_{1 \mathrm{~g}}$ SALC and the metal 4 s orbital is better:

$\mathrm{a}_{1 \mathrm{~g}}+3 \mathrm{dz} z^{2}$

$a_{1 g}+4 s$

The $3 \mathrm{dz}^{2}$ is better off energetically, however, to interact with the $\mathrm{a}_{1 \mathrm{~g}}$ SALC. Thus it is difficult to decide which interaction will be stronger.
(c) As discussed above, the strongest $\mathrm{Mn}-\mathrm{H}$ interaction (by far) involves the $\mathrm{Mn} 3 \mathrm{dx}^{2}-\mathrm{y}^{2}$ orbital. We will "throw out" this orbital.
(d) We will consider only the four remaining Mn 3 d orbitals on each $\mathrm{MnH}_{4}{ }^{-}$fragment.

$\mathrm{a}_{1 \mathrm{~g}}$:

e_{g} :

$\mathrm{b}_{2 \mathrm{~g}}$:

b2g (δ)

b1u ($\delta *)$

Bond order $=4$
(e) When the molecule is staggered, there is no overlap between the $\mathrm{b}_{2 g}$ orbitals of $\mathrm{MnH}_{4}{ }^{-}$ (the dxy orbitals). Under $\mathrm{D}_{4 \mathrm{~d}}$ symmetry, the two dxy orbitals are a basis for the e_{2} representation; they stay non-bonding.

$\mathrm{MnH}_{4}{ }^{-}$
$\mathrm{Mn}_{2} \mathrm{H}_{8}{ }^{2-}$
$\mathrm{MnH}_{4}{ }^{-}$

Bond order $=3$
The staggered conformation should be paramagnetic.

