Chemistry 6330 Problem Set 5 Answer Key

(1)

(a)

Remember that for cyclobutadiene (from PS5) $\Gamma_{p\pi}$ = A_{2u} + B_{2u} + E_u

$$\Psi_{1}(a_{2u}) = \frac{1}{2}[\phi_{1} + \phi_{2} + \phi_{3} + \phi_{4}] \qquad \qquad \Psi_{2}(b_{2u}) = \frac{1}{2}[\phi_{1} - \phi_{2} + \phi_{3} - \phi_{4}]$$
$$\Psi_{3}(e_{u}) = \frac{\sqrt{2}}{2}[\phi_{1} - \phi_{3}] \qquad \qquad \Psi_{4}(e_{u}) = \frac{\sqrt{2}}{2}[\phi_{4} - \phi_{2}]$$

If we allow these orbitals to interact with each other, this will give us the orbitals for the bis(cyclobutadienyl) fragment of the molecule above.

Since all of the orbitals are completely filled or completely empty, the symmetry of the ground state would be ¹A_{1g}, the totally symmetric representation for the D_{4h} point group.

Examination of the D_{4h} character table shows the dipole moment operator has symmetries of A_{2u} (z) and E_u (x,y).

The two lowest lying allowed excited states would be:

$$(b_{2g})^{2} (e_{g})^{3} (a_{1g})^{0} (b_{2u})^{1}$$
¹E_u
$$(b_{2g})^{1} (e_{g})^{4} (a_{1g})^{0} (b_{2u})^{1}$$
¹A_{1u}

The electronic transitions would be:

$$(b_{2g})^{2} (e_{g})^{4} (a_{1g})^{0} (b_{2u})^{0} \to (b_{2g})^{2} (e_{g})^{3} (a_{1g})^{0} (b_{2u})^{1}$$

$$^{1}A_{1g} \to {}^{1}E_{u}$$

$$(b_{2g})^{2} (e_{g})^{4} (a_{1g})^{0} (b_{2u})^{0} \to (b_{2g})^{1} (e_{g})^{4} (a_{1g})^{0} (b_{2u})^{1}$$

$$^{1}A_{1g} \to {}^{1}A_{1u}$$

 $\Gamma_{GS} \, \times \, \Gamma_{\!\mu} \, \times \, \Gamma_{\!ES} \, \Longrightarrow \, \text{Must contain} \, A_{1g}$

$$A_{1g} \times A_{2u} \times E_{u} = E_{g}$$

$$A_{1g} \times E_{u} \times E_{u} = A_{1g} + A_{2g} + B_{1g} + B_{2g}$$
Allowed

$$A_{1g} \times A_{2u} \times A_{1u} = A_{2g}$$
$$A_{1g} \times E_u \times A_{2u} = E_g$$

(e) These allowed transitions are MLCT transitions and would have ε values in the range of 5,000 – 50,000 M⁻¹cm⁻¹. The possible d-d transitions are all forbidden.

(2)

Metal orbital symmetries:

Ligand SALC's:

σ:

$$\Psi(a_{1g}) = \frac{1}{2} [\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4]$$
$$\Psi(b_{1g}) = \frac{1}{2} [\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4]$$
$$\Psi(e_u^{(a)}) = \frac{1}{\sqrt{2}} [\sigma_1 - \sigma_3]$$
$$\Psi(e_u^{(b)}) = \frac{1}{\sqrt{2}} [\sigma_2 - \sigma_4]$$

π:

$$\begin{split} \Psi(a_{2g}) &= \frac{1}{2} \left[p_x^1 + p_x^2 + p_x^3 + p_x^4 \right] \\ \Psi(a_{2u}) &= \frac{1}{2} \left[p_y^1 + p_y^2 + p_y^3 + p_y^4 \right] \\ \Psi(b_{2g}) &= \frac{1}{2} \left[p_x^1 - p_x^2 + p_x^3 - p_x^4 \right] \\ \Psi(b_{2u}) &= \frac{1}{2} \left[p_y^1 - p_y^2 + p_y^3 - p_x^4 \right] \\ \Psi(e_u^{(a)}) &= \frac{1}{\sqrt{2}} \left[p_x^1 - p_x^3 \right] \\ \Psi(e_u^{(b)}) &= \frac{1}{\sqrt{2}} \left[p_x^2 - p_x^4 \right] \\ \Psi(e_g^{(a)}) &= \frac{1}{\sqrt{2}} \left[p_y^1 - p_y^3 \right] \\ \Psi(e_g^{(b)}) &= \frac{1}{\sqrt{2}} \left[p_y^2 - p_y^4 \right] \end{split}$$

(a) σ-only MO diagram

There are two possible types of interactions involving these orbitals:

a_{1g}: dz² + 4 ligands This is a very weak overlap

 b_{1g} : dx^2 - y^2 + 4 ligands This is very good overlap

(b) π -acceptor MO diagram:

(c) π -donor MO diagram:

(d)

<u>σ-only MO diagram:</u>

Once again, under D_{4h} symmetry the dipole moment operator has symmetries of A_{2u} and E_u . Since the ground state has A_{1g} symmetry, the excited state must have A_{2u} or E_u symmetry for the transition to be allowed.

There are several possible low lying allowed transitions: $(a_{1g})^2(b_{1g})^0(a_{1g})^0(a_{2u})^0 \rightarrow (a_{1g})^1(b_{1g})^0(a_{1g})^0(a_{2u})^1$ (Excited state has E_u symmetry) $(a_{1g})^2(b_{1g})^0(a_{1g})^0(a_{2u})^0(e_u)^0 \rightarrow (a_{1g})^1(b_{1g})^0(a_{1g})^0(a_{2u})^0(e_u)^1$ (Excited state has E_u symmetry) $(e_g)^4(a_{1g})^2(b_{1g})^0(a_{1g})^0(a_{2u})^0 \rightarrow (e_g)^3(a_{1g})^2(b_{1g})^0(a_{1g})^0(a_{2u})^1$ (Excited state symmetry includes A_{2u})

 $(e_g)^4(a_{1g})^2(b_{1g})^0(a_{1g})^0(a_{2u})^0(e_u)^0 \rightarrow (e_g)^3(a_{1g})^2(b_{1g})^0(a_{1g})^0(a_{2u})^0(e_u)^1$ (Excited state symmetry includes A_{2u})

These are all metal-centered transitions (d \rightarrow p), meaning that the ϵ values will be around 1,000 M⁻¹cm⁻¹.

<u> π -acceptor MO diagram:</u>

The ground state of this molecule is still A_{1g} and the dipole moment operator still has A_{2u} and E_u symmetry. Now however, there are the ligand π^* based orbitals which can be involved in the transitions. There are several possible low lying transitions. These include the same 4 d-p metal based transitions discussed in the σ -only case. There is also now the possibility of the allowed d- π^* transitions that would have an expected ϵ value of around 5,000-50,000 M⁻¹cm⁻¹. These include:

$$\begin{aligned} &(a_{1g})^2 (b_{1g})^0 \dots (a_{2u}(\pi^*))^0 \to (a_{1g})^1 (b_{1g})^0 \dots (a_{2u}(\pi^*))^1 \ (\mathsf{ES} = \mathsf{A}_{2\mathsf{u}}) \\ &(a_{1g})^2 (b_{1g})^0 \dots (e_u(\pi^*))^0 \to (a_{1g})^1 (b_{1g})^0 \dots (e_u(\pi^*))^1 \ (\mathsf{ES} = \mathsf{E}_{\mathsf{u}}) \end{aligned}$$

$$(e_g)^4 (a_{1g})^2 (b_{1g})^0 \dots (a_{2u}(\pi^*))^0 \to (e_g)^3 (a_{1g})^1 (b_{1g})^0 \dots (a_{2u}(\pi^*))^1$$
 (ES = E_u)

$$(e_g)^4 (a_{1g})^2 (b_{1g})^0 \dots (e_u(\pi^*))^0 \to (e_g)^3 (a_{1g})^1 (b_{1g})^0 \dots (e_u(\pi^*))^1$$
 (ES includes A_{2u})

$$(b_{2g})^2 (e_g)^4 (a_{1g})^2 (b_{1g})^0 \dots (e_u(\pi^*))^0 \to (b_{2g})^1 (e_g)^4 (a_{1g})^1 (b_{1g})^0 \dots (e_u(\pi^*))^1$$
 (ES = E_u)

π-donor MO diagram:

Once again there are several metal-centered transitions possible. These would include: $(e_g)^4(b_{1g})^0(a_{1g})^0(a_{2u})^0 \to (e_g)^3(b_{1g})^0(a_{1g})^0(a_{2u})^1$ (ES = E_u) $(e_g)^4(b_{1g})^0(a_{1g})^0(a_{2u})^0(e_u)^0 \to (e_g)^3(b_{1g})^0(a_{1g})^0(a_{2u})^0(e_u)^1$ (ES includes A_{2u})

 $\begin{aligned} &(a_{1g})^2 (b_{2g})^2 (e_g)^4 (b_{1g})^0 (a_{1g})^0 (a_{2u})^0 \to (a_{1g})^1 (b_{2g})^2 (e_g)^4 (b_{1g})^0 (a_{1g})^0 (a_{2u})^1 \ (\mathsf{ES}=\mathsf{A}_{2\mathsf{u}}) \\ &(a_{1g})^2 (b_{2g})^2 (e_g)^4 (b_{1g})^0 (a_{1g})^0 (a_{2u})^0 \to (a_{1g})^1 (b_{2g})^2 (e_g)^4 (b_{1g})^0 (a_{1g})^0 (a_{2u})^1 \ (\mathsf{ES}=\mathsf{A}_{2\mathsf{u}}) \\ &(a_{1g})^2 (b_{2g})^2 (e_g)^4 (b_{1g})^0 (a_{1g})^0 (a_{2u})^0 (e_u)^0 \to (a_{1g})^1 (b_{2g})^2 (e_g)^4 (b_{1g})^0 (a_{1g})^0 (a_{2u})^1 (e_u)^1 \\ &(\mathsf{ES}=\mathsf{E}_{\mathsf{u}}) \end{aligned}$

Now there are also several possible ligand-to-metal charge-transfer transitions. These allowed transitions would be expected to have ϵ -values around 5,000-50,000 M⁻¹cm⁻¹. They include:

$$(a_{2g})^{2}(b_{2u})^{2}(a_{1g})^{2}(b_{2g})^{2}(e_{g})^{4}(b_{1g})^{0} \rightarrow (a_{2g})^{2}(b_{2u})^{1}(a_{1g})^{2}(b_{2g})^{2}(e_{g})^{4}(b_{1g})^{1}$$
(ES = A_{2u})
$$(a_{2u})^{2}(a_{2g})^{2}(b_{2u})^{2}(a_{1g})^{2}(b_{2g})^{2}(e_{g})^{4}(b_{1g})^{0}(a_{1g})^{0} \rightarrow (a_{2u})^{1}(a_{2g})^{2}(b_{2u})^{2}(a_{1g})^{2}(b_{2g})^{2}(e_{g})^{4}(b_{1g})^{0}(a_{1g})^{1}$$
(ES = A_{2u})

$$(e_{u})^{4}(a_{2u})^{2}(a_{2g})^{2}(b_{2u})^{2}(a_{1g})^{2}(b_{2g})^{2}(e_{g})^{4}(b_{1g})^{0}(a_{1g})^{0} \rightarrow (e_{u})^{3}(a_{2u})^{2}(a_{2g})^{2}(b_{2u})^{2}(a_{1g})^{2}(b_{2g})^{2}(e_{g})^{4}(b_{1g})^{0}(a_{1g})^{1}$$

$$(\mathsf{ES} = \mathsf{E}_{\mathsf{u}})$$

(3) (a)

Under D_{4h} symmetry:

Mn orbitals:

 $\begin{array}{l} 3d \rightarrow A_{1g} + B_{1g} + B_{2g} + E_g \\ 4s \rightarrow A_{1g} \\ 4p \rightarrow A_{2u} + E_u \end{array}$

D _{4h}	Е	2C4	C ₂	2C ₂ ′	2C2''	i	2S4	σ_h	2σν	$2\sigma_{d}$
Γ (H1s)	4	0	0	2	0	0	0	4	2	0
				-		_				

 $\Gamma_{(H1s)} = A_{1g} + B_{1g} + E_u$

Because H bonded to metal atoms is assigned a formal oxidation state of (-1), we will assume the H 1s orbitals lie lower in energy than the Mn 3d orbitals. The MO diagram is then straightforward.

*Note that the strongest Mn-H interactions are in the b_{1g} orbitals, which are the bonding and antibonding interactions between the H 1s b_{1g} SALC and the Mn $3dx^2-y^2$ orbital.

The metal $a_{1g} 3dz^2$ orbital is destabilized slightly because of poor overlap – the H 1s orbitals must overlap with the torus (or "doughnut") of the dz^2 orbital.

(b) As discussed above, the overlap between the H 1s a_{1g} SALC and the $3dz^2$ metal orbital is poor. The other overlap between the a_{1g} SALC and the metal 4s orbital is better:

The $3dz^2$ is better off energetically, however, to interact with the a_{1g} SALC. Thus it is difficult to decide which interaction will be stronger.

(c) As discussed above, the strongest Mn - H interaction (by far) involves the $Mn 3dx^2-y^2$ orbital. We will "throw out" this orbital.

(d) We will consider only the four remaining Mn 3d orbitals on each MnH₄⁻ fragment.

MnH₄⁻

Mn₂H₈²⁻

MnH4⁻

Bond order = 4

(e) When the molecule is staggered, there is no overlap between the b_{2g} orbitals of MnH₄⁻ (the dxy orbitals). Under D_{4d} symmetry, the two dxy orbitals are a basis for the e_2 representation; they stay non-bonding.

The staggered conformation should be paramagnetic.