Impedance Tutorial
Wu Group
Billy McCulloch
UV-Vis Spectroscopy

Input

\[h\nu \]

Sample

\[I_0 \]

Output

\[I \]

• Scan Frequency: \(~ 3-8 \times 10^{14}\) Hz
• Change in Amplitude of signal- Related to the Transmittance(\(\nu\))
• Gain Information about the effect of frequency on the sample
Impedance Spectroscopy

- **Input Voltage Signal**
- **Sample Cell**
- **Output Current Signal**

- Scan Frequency: $\sim 0.01 - 1 \text{ MHz}$
- Change in Amplitude and phase related to the Impedance(ν)
- Difference elements respond differently to different Frequencies
Dependence of Resistor

Resistor

Ohms Law

\[R = \frac{V}{I} \]

\[Z = \frac{V(t)}{I(t)} \]

Input Voltage

\[V(t) = \sin(\omega t) \]

Output Current

\[I(t) = \frac{\sin(\omega t)}{R} \]

Phase Angle

\[\phi = 0^\circ \]
Dependance of a Capacitor

\[Q = CV \]
\[\frac{dQ}{dt} = C \frac{dV}{dt} \]

\[V(t) = \sin(\omega t) \]
\[I(t) = C \omega \cos(\omega t) \]
\[I(t) = C \omega \sin(\omega t + 90^\circ) \]

\[Z = \frac{V(t)}{I(t)} \]

\[Z_{\text{Capacitor}} = \frac{1}{\omega C} \]

Phase \(\phi = 90^\circ \)
How to Visualize the Data?

Magnitude, Z_0 Phase Angle, ϕ

$$Z = \frac{E_t}{I_t} = \frac{E_0 \sin(\omega t)}{I_0 \sin(\omega t + \phi)} = Z_0 \frac{\sin(\omega t)}{\sin(\omega t + \phi)}$$

Nyquist Plot (Complex Plane)

Bode Plots

Phase Angle $\phi = -51.7^\circ$
Common Electrode-Electrolyte System

- Faradaic Current
 \[e^- + \rightarrow \]

- Nonfaradaic Current (Capacitive Charging)
 \[C_{dl} \]
The diagram illustrates a frequency-dependent circuit with the following components:

- **R_s**
- **R_{ct}**
- **C_{dl}**

The impedance of the capacitor at high frequency is given by:

\[Z_{\text{capacitor}} = \frac{1}{i\omega C} \]

And the impedance of the resistor is:

\[Z_{\text{resistor}} = R \]

At high frequency (**ω → ∞**), the capacitor impedance approaches zero:

\[Z_{\text{capacitor}} \rightarrow 0 \]

At low frequency (**ω → 0**), the capacitor impedance approaches infinity:

\[Z_{\text{capacitor}} \rightarrow \infty \]

The Bode plots show the magnitude (IZI) and phase (ϕ) of the circuit components over frequency. The plots indicate a phase shift of **-90°** at low frequencies and **0°** at high frequencies, with the overall resistance (**R₁ + R₂**) remaining constant.
Frequency Dependent Circuit

\[Z_{\text{Capacitor}} = \frac{1}{i\omega C} \quad Z_{\text{resistor}} = R \]

High Frequency
\(\omega \rightarrow \infty \)
"Looks like" \(R_s \)

Low Frequency
\(\omega \rightarrow 0 \)
"Looks like" \(R_s \parallel R_{ct} \)

Bode Plots

<table>
<thead>
<tr>
<th>Frequency</th>
<th>(I_Z I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>(0^\circ)</td>
</tr>
<tr>
<td>(R_1 + R_2)</td>
<td>(\sim -90^\circ)</td>
</tr>
</tbody>
</table>

Frequency
Frequency Dependent Circuit

Nyquist Plot

High Frequency \(\omega \rightarrow \infty \)
\[
Z_{\text{Capacitor}} \rightarrow 0
\]

Low Frequency \(\omega \rightarrow 0 \)
\[
Z_{\text{Capacitor}} \rightarrow \infty
\]

\[
\tau = R_{\text{ct}} \cdot C_{\text{dl}}
\]

\[
R_{\text{ct}} = \frac{1}{i \omega C}
\]

\[
Z_{\text{resistor}} = R
\]

\[
\omega = \frac{1}{\tau}
\]

\[
\mathcal{R} = R_{\text{ct}}
\]

\[
\mathcal{L} = R_{\text{s}}
\]

\[
Z_{\text{Real}}
\]

\[
Z_{\text{im}}
\]
Running The Experiment

DEMO

\[R_u \quad 2.95 \text{k}\Omega \quad - \quad 3.07 \text{k}\Omega \]
\[R_1 \quad 196 \text{\Omega} \quad - \quad 204 \text{\Omega} \]
\[C_1 \quad 0.9 \mu\text{F} \quad - \quad 1.10 \mu\text{F} \]
Impedance Applications

- **A** = region of high frequencies (MHz – KHz)
- **B** = region of low frequencies (Hz – µHz)

Impedance Applications

Butler-Volmer Equation

\[i = i_0 \exp(\alpha \frac{nF}{RT} \eta) - \exp(-(1 - \alpha) \frac{nF}{RT} \eta) \]

Low Overpotential

\[e^x \rightarrow (1 + x) \]

\[R_{ct} = \frac{RT}{nF i_0} \]

Used to calculate \(i_0 \) (exchange current density)

Good Representation of catalytic activity of the electrode surface toward a specific redox couple