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Chapter 6

Understanding and Exploiting Peptide Fragment Ion 
Intensities Using Experimental and Informatic Approaches*

Ashley C. Gucinski, Eric D. Dodds, Wenzhou Li, and Vicki H. Wysocki

Abstract

Tandem mass spectrometry is a widely used tool in proteomics. This section will address the properties 
that describe how protonated peptides fragment when activated by collisions in a mass spectrometer and 
how that information can be used to identify proteins. A review of the mobile proton model is presented, 
along with a summary of commonly observed peptide cleavage enhancements, including the proline 
effect. The methods used to elucidate peptide dissociation chemistry by using both small groups of 
model peptides and large datasets are also discussed. Finally, the role of peak intensity in commercially 
available and developmental peptide identification algorithms is examined.

Key words: Peptide fragmentation, Data mining, Tandem mass spectrometry, Mobile proton model, 
Intensity-based algorithms, Dissociation pattern, Intensity, Statistical analysis

Mass spectrometry (MS), which allows for measurement of peptide, 
protein, and fragment ion mass-to-charge ratios (m/z), is widely 
used in studies that aim to identify peptides and proteins. Often, 
these studies involve high-throughput, large-scale identification of 
proteins from complex mixtures (1, 2). MS is expected to continue 
serving an important function in this arena for many years to 
come due to the sensitivity, selectivity, and speed of MS-based 
analyses (3). The further optimization and enhancement of MS 
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technology and data analysis capabilities for proteomics remain a 
highly active area of research (4–6).

While single stage mass spectrometry does play a role in 
protein identification, many protein identifications are performed 
by tandem mass spectrometry (MS/MS) of peptides derived 
from protein digests (7–9). In a common “bottom-up” MS/MS 
approach to proteomics for large-scale protein identification, 
peptides are produced by enzymatic digestion of a mixture of 
proteins. The specificity of the protease determines the sites at which 
peptide bonds are hydrolyzed and thus dictates the numbers, 
lengths, and terminal residue identities of peptides produced from 
a given protein. The peptides produced by digestion of a mixture 
of proteins are commonly separated by one or two stages of high-
performance liquid chromatography (HPLC), ionized (typically by 
electrospray ionization, ESI) (10), and mass-selected for MS/MS 
fragmentation analysis. After peptide ion activation and subsequent 
dissociation, product ions are analyzed by m/z and relative inten-
sity. This MS/MS spectral information must then be converted into 
peptide sequence information and in turn, protein identification. 
A schematic for this process is shown in Fig. 1.

Several algorithms are available that perform peptide sequencing 
and protein identification from MS/MS data (11–14), and 
additional software tools have been developed to help users 
consolidate and interpret database search results (15). These 
various protein identification algorithms have differing success 
rates, and current algorithms assign sequence matches to only a 
minority of acquired spectra. Therefore, it would be appealing to 
obtain sequence matches for a larger percentage of peptide spectra 
submitted to a given algorithm. This would allow additional 
proteins to be identified from a given dataset and would also 

Fig. 1. Schematic of tandem mass spectrometry based protein analysis
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provide a larger number of matching peptides per identified protein. 
Together, these improvements would lend greater confidence to 
protein identifications while minimizing the potential for false 
positive associations. It should also be noted that simplistic 
proteomic approaches are impractical in certain situations for a 
variety of reasons. For instance, genome data may not be available 
for a particular species (16), posttranslational modifications may 
require characterization (17), or the peptides being analyzed 
may not be protein derived (e.g., neuropeptides or peptide 
hormones) (18).

Some types of MS/MS scoring routines involve production 
of a list of expected fragment ions or generation of a predicted 
MS/MS spectrum. These theoretical predictions are then used 
to rank potentially matching sequences that lie within a given 
m/z tolerance of known sequences derived from genomic data. 
To date, knowledge of residue- or peptide-specific dissociation 
chemistry has been only sparingly incorporated into the process 
of spectrum prediction and match scoring. Moreover, those 
algorithms that do include chemically relevant criteria involve only 
the most simplistic implementations. For example, experimentally 
observed fragment ions corresponding to the neutral loss of 
ammonia would require the presence of arginine, lysine, glutamine, 
or asparagine in the fragment ion. The inclusion of these very 
simple and qualitative chemical dissociation rules is typically the 
only extent to which knowledge of peptide ion chemistry informs 
the informatic aspect of a proteomic experiment.

At present, fragment ion intensity information is disregarded 
or only minimally accounted for by proteomic database search 
algorithms. The overwhelming majority of these algorithms are 
based on m/z values only, with none of the popular approaches 
to database searching presently employing a sophisticated model 
of relative peak intensities among peptide dissociation products. 
Generally, this means that ion abundance information, including 
strong enhancement or suppression of particular ions, is not used 
by the algorithms. Thus, the current paradigm for MS/MS 
database searching in proteomics is based on only one dimension 
of inherently two dimensional datasets. The incomplete use of the 
available spectral information is largely attributed to the fact that 
it is not yet fully known how to most appropriately determine and 
exploit peptide product ion intensity information. Considering 
that sequence information is also encoded within the intensity 
dimension of an MS/MS spectrum, a chemically meaningful 
incorporation of fragment ion abundance into tools for proteome 
informatics has significant potential to improve the success rate 
and confidence level of sequence and protein identifications. 
The development of this type of platform is expected to provide 
a rich and thus far relatively untapped source of sequence relevant 
information.
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A large body of research has established that the relative 
intensity of peptide fragment ions is remarkably sensitive to peptide 
composition, sequence, charge state, and the location of charges, as 
well as the type of instrument and activation method used (19, 20). 
This complex and nuanced behavior presents major challenges for 
the design of rigorous predictive models for peptide product ion 
abundances. Because our research and the research of others has 
shown that certain structural motifs lead to enhanced or dimin-
ished MS/MS cleavage, it is logical to consider whether inclusion 
of selective cleavage information for particular structural motifs 
into protein identification algorithms might improve identification 
rates. Recently, we and several other authors have made the 
suggestion that greater knowledge of gas-phase peptide dissociation 
patterns and the underlying chemical reasons for the dissocia-
tion patterns might lead to the development of improved algo-
rithms. In order to realize the potential benefits of relative intensity 
information in a proteomic context, multifaceted and interdisci-
plinary research will be essential. First, understanding of the 
chemical basis for cleavage selectivity and fragment ion abundance 
must be advanced and refined through systematic study of model 
peptide systems. Second, large databases of peptide MS/MS 
data must be explored for distinctive spectral features that can be 
related to peptide sequence. Finally, these insights must be used to 
inform the design and implementation of improved sequencing 
algorithms. This chapter will address each of these areas in turn.

Peptides are usually analyzed by MS as singly protonated 
(i.e., [M+H]+) and multiply protonated (i.e., [M+nH]n+) mole-
cules. The most common method of dissociating peptides in MS/
MS is collision-induced dissociation (CID), which involves the 
conversion of peptide ion kinetic energy into vibrational energy 
upon impact with neutral, inert target gas atoms or molecules. 
Peptides may also be subjected to tandem mass spectrometry using 
surface-induced dissociation (SID), which deposits vibrational 
energy into precursor ions by means of colliding them with a 
surface. Although this chapter is primarily focused on peptide ion 
dissociation as a result of vibrational activation, it is important 
to note some important alternative activation methods. In recent 
years, electron capture dissociation (ECD) and electron transfer 
dissociation (ETD) have proven to be effective dissociation methods 
for proteomics (21, 22). These activation techniques involve the 
capture of a low-energy electron by a multiply protonated peptide 
(in the case of ECD) or transfer of a low-energy electron from 
an anionic reagent to a multiply protonated peptide (in the 
case of ETD). While CID and SID MS/MS spectra contain 

2. The Mobile 
Proton Model  
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predominantly b and y sequence ions, ECD and ETD MS/MS 
spectra contain mainly c and z ions. These collisional and electronic 
activation methods produce very different MS/MS spectra with a 
high level of complementarity. The combination of complementary 
activation methods, such as CID and ETD, can often provide more 
protein identifications than either method alone (21, 23).

Because peptides are polyfunctional molecules, the charge-
carrying proton or protons may potentially occupy a number of 
basic sites on the side chains of amino acid residues (e.g., the side 
chain guanidino group of arginine residues) or along the peptide 
backbone (e.g., carbonyl oxygen atoms). Given a sufficient internal 
energy, an activated peptide ion will undergo unimolecular 
decay to yield fragment ions. In CID and SID, these are most 
commonly sequence ions of the b and y types, which are formed 
through dissociation mechanisms that involve the participation of 
a charge-carrying proton. Thus, the location of protons exerts a 
strong influence on the sites of cleavage (24–27). While some 
potential protonation sites are more favored than others, it should 
not be overlooked that at a given point in time and for a given 
distribution of internal energies, a population of ostensibly identical 
protonated peptides is actually a collection of variously protonated 
isoforms. That is, a population of protonated peptides can, in 
reality, be a collection of distinct ions, with the proton or protons 
occupying different sites. Moreover, a given protonated peptide is 
not static; rather, protons can be intramolecularly transferred to a 
number of potential sites.

The foregoing considerations serve to illuminate a general 
qualitative framework for describing peptide fragmentation 
behavior on the basis of proton mobility. While the mobile proton 
model alone does not provide for quantitative prediction of 
fragment ion intensities, the model does furnish sound chemical 
rationale for several well known types of enhanced and diminished 
cleavage. One influence of proton mobility on peptide fragmenta-
tion can be dramatically demonstrated by comparing the collision 
energies required to dissociate peptide ions having differing 
numbers of charge-carrying protons in relation to the number of 
basic amino acid side chains (28, 29). Those peptide ions with a 
number of protons greater than the number of basic amino acid 
residues tend to dissociate at relatively low collision energies. 
In these cases, each basic residue is considered to harbor a proton, 
leaving at least one additional, mobile proton. Dissociation of 
these precursor ions generally yields product ions with good 
sequence coverage, as under such circumstances, there are many 
roughly equivalent sites of protonation that may be occupied by 
the mobile proton. By contrast, peptide ions with a number of 
charge-carrying protons less than or equal to the number of basic 
amino acid residues (particularly, arginine residues) require signifi-
cantly greater collision energies in order to efficiently dissociate. 
In these cases, all available protons are most favorably localized at 
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the basic side chains, thus not allowing for a readily mobile proton. 
In this case, additional energy is required to mobilize these 
sequestered protons or to reduce basicity by an intermediate 
neutral loss and thus allow the participation of these protons in 
backbone cleavage mechanisms.

Proton mobility not only plays a role in the overall activation 
energy required to bring about peptide ion dissociation but also 
serves to explain some well-known types of selective cleavage. For 
example, cleavage C-terminal to aspartic acid residues (and, to a 
lesser extent, glutamic acid residues) is highly favored in the absence 
of mobile protons (30, 31). This type of enhanced cleavage has 
been attributed to the participation of an acidic side chain proton 
in the dissociation mechanism. Because the proton participating in 
the dissociation chemistry is not the charge-carrying proton, this 
type of cleavage is often described as a charge-remote pathway. 
When mobile protons are available, cleavage C-terminal to acidic 
residues becomes an essentially nonselective process. Selective 
cleavage is also commonly observed at the C-terminus of histidine 
residues, although the behavior of this cleavage is different from 
that seen at the C-terminus of acidic residues (32). For these 
peptide ions, the fragmentation occurs preferentially only in the 
presence of mobile protons. This observation has been inter-
preted as evidence that a charge-carrying proton must occupy the 
histidine side chain imidazole group in order to bring about 
the selective cleavage. By contrast, histidine-containing peptide 
ions with no mobile protons cleave in a nonselective manner. 
While these examples do not constitute an exhaustive discussion 
of mobile proton related selective cleavage types, they do serve to 
illustrate the exquisite sensitivity of peptide dissociation patterns 
to the chemistry of each specific ion.

As mentioned previously, proteomics experiments use algorithms, 
such as Sequest or Mascot, to assign peptide sequences to peptide 
fragmentation spectra in order to identify the corresponding 
proteins present in a sample (12, 14). While these programs have 
greatly enabled progress in proteomics, they are still limited from 
both a practical and chemical perspective. Of the thousands of 
tandem mass spectra acquired in a given experiment, only a 
small percentage of the spectra are identified by the algorithms 
(33–36). This may be due in part to the simplicity of the chemical 
fragmentation models these algorithms use, as mentioned in the 
previous section (12, 14). One limitation of the fragmentation 
models used is that cleavages are predicted to occur almost 
exclusively at the amide bond between neighboring residues, 

3. Elucidation  
of Chemical Trends 
from Collections  
of Fragmentation 
Spectra



79Understanding and Exploiting Peptide Fragment Ion Intensities  

regardless of amino acid residues present. As many groups have 
identified several reproducible residue-dependent cleavage enhance-
ments (19, 31, 37, 38), it is clear that the algorithms do not take 
into account all of the chemical information available to describe a 
peptide fragmentation spectrum. Incorporating more chemically 
detailed information may help to improve the ability of an algorithm 
to correctly identify a peptide based on a fragmentation spectrum if 
a robust, fast, and sophisticated model can be developed.

A wide variety of chemical properties have been shown to affect 
the fragmentation pattern of a peptide. Some of those explored 
include size, charge state, and residues present (28, 30, 37–42). 
The way in which all of these factors act together to give a certain 
fragmentation spectrum is complex and not yet fully understood. 
Two main approaches have been taken in order to understand the 
effect of different characteristics on peptide fragmentation: 
systematic studies using model peptides and data mining applied 
to large datasets.

Several groups have used small subsets of model peptides to dem-
onstrate trends in peptide fragmentation spectra. Tsaprailis et al. 
used a small set of angiotensin peptide analogs to systematically 
explore the effect of the neighboring residue on enhanced cleavage 
at histidine residues (32). Dongre et al. demonstrated the role of 
residue basicity, peptide length, and peptide sequence on fragmen-
tation patterns using systematically modified leucine enkephalin 
analogs, polyalanine analogs, and des-Arg bradykinin derivatives 
(28). Figure 2 shows the fragmentation efficiency curves for a series 
of singly protonated polyalanine analogs with different N-termini. 
As the gas phase basicity of the first residue increases, additional 
collision energy is required to achieve the same fragmentation effi-
ciency. The increase in energy required to achieve fragmentation 
within the given timescale demonstrates the ability of more basic 
residues to more tightly sequester the ionization proton, a result 
that played a role in development of the mobile proton model.

Vaisar and Urban used a similar method to examine the 
proline effect on peptide fragmention by looking at a series of 
five different peptides of the sequence Ala-Val-X-Leu-Gly (43). 
These studies and others clearly indicate that multiple factors are 
responsible for the overall fragmentation behavior of a peptide. 
While each of these examples can describe differences in fragmen-
tation behavior in relation to other peptides in the study that have 
been varied with a systematic intent, it is not possible to either fully 
elucidate all of the contributions to the fragmentation spectrum, 
nor is it possible to draw more general conclusions of how these 

4. Model Peptide 
Studies
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factors can be applied to larger sets of spectra. Because proteomics 
readily generates a large number of spectra to be interpreted, and 
because large numbers of spectra are needed to achieve statisti-
cally valid numbers of combinations of various residues, methods 
that seek to discern fragmentation patterns from large sets of data 
may be more appropriate tools.

Tandem mass spectrometry data are aptly suited for data mining 
as a typical proteomics experiment will quickly generate several 
thousands of widely varied MS/MS spectra. The goal of data 
mining is to identify underlying patterns from the spectra that 
can ideally be correlated to chemical phenomena that will 
help describe the ways in which peptides fragment. Generally, 
data mining can be broken down into two approaches after data 
acquisition: classification and pattern analysis, and/or clustering 
and pattern analysis.

It is important to note here that a major requirement of data 
mining is the availability of large, high quality datasets in which 
there is great certainty that the peptide sequences are correctly 
identified based on the corresponding fragmentation spectra. 
Datasets consisting of a few thousands to a few million spectra 
have been studied via data mining in order to elucidate trends 

5. Introduction  
to Data Mining

Fig. 2. Influence of gas-phase basicity on fragmentation efficiency. As gas-phase basicity 
increases (from A to P to K to R), the ionizing proton is more easily sequestered so that 
more energy is required to achieve the same fragmentation efficiency. Reproduced with 
permission from J. Am. Chem. Soc. 1996, 118, 8365–8374. Copyright 1996 Am. Chem. Soc
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(33, 35, 36, 38, 40, 42, 44). Small sets of model peptides have an 
advantage in terms of the ease of assembling the data set because 
peptides and their desired analogs can readily be synthesized and 
easily characterized using basic MS and MS/MS measurements. 
Assembling a dataset with thousands of spectra in the same manner 
would be extremely time intensive and lacking in practicality. 
Rather than synthesizing thousands of peptide analogs, proteolytic 
digests of complex protein mixtures are analyzed via LC-MS 
and the corresponding MS/MS spectra are collected. As stated 
previously, in a given experiment of this type, as few as 10–35% of 
the spectra can be correctly identified. In order to trim these data sets 
to include only spectra that have had their sequences identified 
with high certainty, the data are first run through an algorithm, 
and the spectra that are matched to a peptide/protein with an 
acceptable cutoff score are saved (33, 35, 38, 42). In order to 
further validate a dataset, Smith and coworkers ran a complex 
digest through two types of mass spectrometers, an FT-ICR and 
an ion trap, which were coupled with identical chromatographic 
conditions (45). The combination of the accurate mass measure-
ments from the FT-ICR and the fragmentation spectra from the 
ion-trap was paired with the use of Sequest; when Sequest identified 
the peptide that was within 1 ppm of the accurate mass and 
correlated to the fragmentation spectrum at the same retention 
time within a margin of error, then the spectrum was considered 
to be identified with very high confidence. However, this approach 
necessarily introduces bias because those spectra and sequences 
that are not identified are not represented in the database. While 
this method would not eliminate all incorrectly assigned peptide 
fragmentation spectra, it would identify a large number of high 
quality spectra in a relatively small amount of time.

The motivation for using a larger dataset as opposed to a set 
of systematically altered model peptides is that a larger distribution 
and variability of peptides and their corresponding fragmentation 
spectra will be present. With a greater distribution, the goal is to 
identify underlying trends in the fragmentation spectra that can 
be universally applied to future systems. However, many subsets 
are limited to one charge state or one type of peptide. Many have 
focused their studies on doubly charged tryptic peptides, as they 
are a common type of peptide ion seen (35, 38, 40, 42). Only a 
few researchers, including Wysocki and Zhang, have investigated 
the role of a variety of charge states (41, 46). While some 
other charge states and nontryptic peptides are less common in 
proteomics experiments, it is nonetheless important to acknowledge 
the specific bias a given dataset may contribute to the outcome of 
a data mining effort.

Once the dataset is assembled, data mining may proceed 
through two main approaches: classification and pattern analysis 
or clustering and pattern analysis. One common approach is to 
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first include a preclassification step. Based on previously understood 
chemical principles, Huang et al. preliminarily separated data 
from 28,311 spectra into nine subsets based on structural features, 
such as proline content and basic residue content, and the charge 
state (41). In each subset of this study, pairwise fragmentation 
maps were generated to describe cleavages between all possible 
residue pairs. An example of this fragmentation map is shown in 
Fig. 3, which illustrates the y (top) and b (bottom) ion intensity 
patterns among doubly charged arginine (left) and lysine (right) 
terminated peptides. These fragmentation maps yield a plethora 
of information that may be integrated into future peptide identifi-
cation algorithms.

Fig. 3. Pairwise fragmentation map for singly charged peptides ending in arginine (Iy and Ib) or lysine (IIy and IIb). 
Reproduced with permission from Anal. Chem. 2005, 77, 5800–5813. Copyright 2005 Am. Chem. Soc
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In a similar approach, Tabb et al. examined trends in a database 
of 1,465 doubly charged tryptic peptides (35). Initially, they 
refined their dataset to include only doubly charged ions whose 
spectra contained at least 50% of the theoretically predicted ions 
that were fully tryptic; that is, ending in Arg or Lys without any 
internal Arg or Lys residues. They then examined the relationship 
between fragment intensity and ion series origin, fragment mass, 
residue type and effect on the neighboring amide bond cleavage, 
and the link between peptide amino acid composition and neutral 
fragment loss. In another study by Tabb et al., proteinase K was 
used to generate 2,568 nontryptic doubly charged peptides so 
that the role of basic residue location in a peptide could be 
correlated to fragmentation efficiency (42). A similar method was 
used by Kapp et al. to investigate trends using a dataset of 5,500 
peptides. The authors demonstrated that the incorporation of a 
proton mobility factor could greatly improve algorithm identifi-
cation success (36).

Others have used data mining to focus on specific fragmenta-
tion patterns, such as Huang’s investigation of the influence of 
internal basic residues on the fragmentation C-terminal of the 
acidic residues Asp and Glu and Breci’s look at fragment ion 
intensities due to cleavage N-terminal to Pro (37, 38). Through 
an examination of the b and y fragment ion intensity C-terminal 
to Asp when an internal His was present, Huang and coworkers 
were able to demonstrate that cleavage C-terminal to Asp was 
enhanced because of the ability of a basic His internal residue to 
sequester protons for doubly charged tryptic peptides. Breci et al. 
used a measure of the relative bond cleavage, which compares the 
intensity of the ions from cleavage at Pro to the intensity of all 
ions present in the spectrum, to determine that while cleavage 
N-terminal to Pro is reproducible for a certain residue, there is 
not enough chemical understanding as of yet to fully elucidate 
the entire fragmentation mechanism.

An alternative approach taken by Huang et al. was to use a 
penalized K-means algorithm to allow for unsupervised clustering 
of 28,330 spectra (47). This allowed for the peptide fragmenta-
tion spectra to cluster into four groups without the introduction 
of any prior chemical knowledge into the algorithm, as shown in 
Fig. 4. After the clustering, a decision tree was used in order to 
correlate the clusters to specific chemical properties. A fifth 
cluster for noise and outlier peaks was also generated using a 
method developed by Tseng, to allow for cleaner clustering. This 
method is important because it bypasses the need to introduce 
any prior assumptions and instead provides a relatively unbiased 
overview of the fragmentation behavior observed in the dataset as 
a whole.

Whittaker and coworkers have employed an alternative data 
mining technique that they refer to as statistical modeling, which 



Fig. 4. Quantile maps of b (above) and y (below) ions for the four clusters identified from Huang’s study using a 
penalized K-means algorithm for unsupervised clustering. The four clusters of spectra are characterized by the dominant 
cleavages patterns seen: (a) X–P, (b) I/L/V–X, (c) both D–X and X–P, and (d) D/E–X. Reproduced with permission from 
Proteome Res. 2008, 7, 70–79. Copyright 2008 Am. Chem. Soc
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uses probabilistic models relating trends in fragmentation spectra 
to multiple predictor variables (39, 48). The key advantage of 
statistical modeling is in the ability to consider each factor simul-
taneously as opposed to independently. This is ideally suited for 
the interpretation of tandem mass spectra, as the factors dictating 
a particular fragmentation pattern are complex and multivariate 
in nature. For example, Barton et al. used models to describe 
b and y ion formation (separately, as they regarded different 
factors to influence the formation of each ion type) involving 
fragment ion mass, cleavage location and neighboring residues, 
and peptide residue composition (48).

Elias et al. used a machine learning approach to examine the 
ion intensities of 27,000 high quality fragmentation spectra to 
develop a model that can describe how likely it is that certain 
fragments would appear with a predicted relative intensity (33). 
They compared these predictions to a set of peptides that were 
either matched or mismatched to determine how the incorporation 
of ion intensity information could improve the success of the 
peptide identification algorithm. They saw improvements in pep tide 
identification from 50 to 96%, suggesting that the incorporation of 
intensity is crucial to the improvement of these algorithms. This 
will be further discussed in the following section.

As mentioned previously, various factors, including size, charge 
state, amino acid content, and charge location, can contribute to the 
process of gas phase peptide dissociation, making the resulting 
fragmentation spectra difficult to fully predict or interpret (19). 
This problem is compounded by the fact that most current 
algorithms rely on models that oversimplify the fragmentation 
process, thus causing valuable spectral information to be  
discarded. Introducing more of the available chemical informa-
tion and fragmentation patterns into a sequencing algorithm 
could therefore allow the algorithm to more efficiently and more 
accurately match a peptide fragmentation spectrum to its correct 
matching peptide. This section will examine how several popular 
algorithms use the available peptide fragmentation information to 
predict spectral matches.

Some of the popular algorithms that are used to perform 
peptide sequencing or protein identification from MS/MS data 
include MS-Tag, SEQUEST, MASCOT, X!Tandem, OMSSA, 
and Phenyx (14). MS-Tag is an algorithm that was originally 
developed for the interpretation of MS/MS spectra that do not 
contain a contiguous ion series; that is, not all characteristic b and y 
ions are present (11). Figure 5 shows an experimental spectrum 
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and the theoretical contiguous ion series that would correspond 
to the sequence of the peptide AEAYITGK.

Assignment of a peptide sequence to a spectrum involves 
calculating the theoretical fragment ion m/z values for all candidate 
peptide sequences. MS-Tag ranks the candidate sequences in 
the order of increasing number of unmatched experimental 
fragment ions.

SEQUEST is an algorithm that correlates a given uninter-
preted MS/MS spectrum with candidate sequences through the 
use of scoring and ranking methods based on spectral similarity by 
cross-correlation of the theoretically predicted spectra and the 
experimental spectrum (11). However, SEQUEST does not 
compare the raw spectra with predictions. Instead, it divides the 
spectrum into 10 bins and normalizes each to the most intense 
peak in the bin, effectively removing relative ion intensity across 
the entire fragmentation spectrum as a strong determinant of a 
match. This approach has been very successful in matching spectra 
to candidate sequences despite the lack of detailed rules for  
predicting fragment ion intensities.

MASCOT is an algorithm that contains multiple approaches 
to database searching, of which two use MS/MS data (MS/MS 
Ion Search and Sequence Query) (14). MS/MS Ion Search 
calculates theoretical fragment ion masses in a similar manner to 
that of MS-Tag before matching them to experimental spectra. 
Sequence Query requires some manual interpretation of the MS/
MS data during which molecular weight, residue composition, and 
sequence qualifiers are determined for the candidate sequences. 
Both MASCOT strategies use the same probability-based 
scoring routine based on the MOWSE algorithm in which pep-
tide size distributions (or peptide fragment size distributions) are 

Fig. 5. Comparison of actual peptide fragmentation spectrum (top) to contiguous ion series (bottom)
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considered with respect to protein masses (or peptide masses) in 
the searched database. A cutoff score for the probability that a 
match is a purely random event is given for each search.

X!Tandem, the most popular open source algorithm, uses 
intensity in its preliminary score, or hyperscore (49). This score is 
similar to ion intensity current, which is the sum of the intensities 
of all b and y ions found in the experimental spectra. This is not the 
same as using peak intensity information that reflects chemical 
fragmentation suppression or enhancement; it only acknowledges 
the presence of a peak. Through a statistical analysis of the hyper-
score of each candidate sequence, an expectation value (E-value) 
describing the significance of the difference between the top match 
and other matches is generated and used as the main score of 
X!Tandem. Because this idea is common to several algorithms, 
the use of a hyperscore alone is not enough to significantly 
improve the success of X!Tandem when compared to other 
algorithms that use additional information and scoring stages to 
assign peptide spectra.

OMSSA (Open Mass Spectrometry Search Algorithm) is 
another example of an open source algorithm that uses expecta-
tion values as criteria, similar to X!Tandem. The older version of 
OMSSA only uses intensity as a threshold to filter noisy peaks 
(13), while the newer version has improved how intensity is used 
(50). In the newer edition, each peak in the experimental spec-
trum is ranked. The sum of the ranks of the matched peaks is 
compared with a normal distribution of ranks of random peak 
sums to calculate an expectation value. Like X!Tandem, OMSSA 
is complementary to Sequest because it gives an identification a 
probability component, whereas Sequest matches do not include 
probability.

Lastly, Phenyx is a platform that generates its score based on 
an extended match, which matches a peptide using a combination 
of and comparison between theoretical and experimental spectra. 
(51). In other words, this method incorporates structural 
information such as intensity, ion series contiguity, and spectral 
signal-to-noise ratios in addition to m/z information, and the 
extended match score reflects the quality of a match. By analyzing 
a testing set of spectra with known sequences, Phenyx calculates 
the probability of observing the above extended match information 
when the match is correct or if the match is purely random; the ratio 
of these two probabilities is the Phenyx score. When attempting 
to identify a peptide sequence from an unknown spectrum, 
similar extended match information can be generated against 
candidate sequences in a given database to determine the ratio 
score. Evaluation of the score will enable true matches to be 
distinguished from false.

While these algorithms are popular and successful in proteomics 
studies worldwide, they are not without limitations. Because every 
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spectrum is assigned to a sequence candidate, a variety of studies 
have shown that in a typical MS/MS run, over 80% of the peptide 
identifications by SEQUEST are false and filters are necessary to 
eliminate those low confidence matches; programs have been 
developed, such as DTASelect, Peptide Prophet, and Protein 
Prophet, that remove these low confidence matches (52–54). 
However, scoring cut-off filters may also require that some 
correctly identified spectra are discarded in order to remove a 
majority of the false positive identifications. Though many 
proteins can still be identified using current algorithms, and the 
use of multiple algorithms can be combined to increase protein 
identification confidence as demonstrated by Searle et al. (15), 
these algorithms are still far from optimally meeting the rapid 
identification demands of the proteomics experiments that generate 
large volumes of peptide fragmentation spectra.

One common characteristic for all of these widely used 
algorithms is that they mainly utilize the mass-to-charge ratio 
information from a mass spectrum while ignoring the intensity 
component beyond the intensity threshold (12, 14). This is 
generally a result of insufficient knowledge of the peptide disso-
ciation process, as we mentioned previously, though some 
efforts have been made recently to include intensity into peptide 
identifications algorithms (46, 47, 55–58). As discussed previously, 
reproducible intensity patterns have been identified for several 
residues, such as the study by Breci and coworkers on the enhanced 
cleavages N-terminal to proline (37). The integration of intensity 
is emphasized in certain algorithms not because it is more critical 
than m/z, but because it can provide additional correlating 
information that can assist with the peptide identification. Studies 
have shown that the incorporation of intensity can reduce peptide 
fragmentation identification error by 50–96% (33). Clearly, the use 
of intensity to improve peptide identification rates is an attractive 
prospect. Indeed, while this chapter has placed strong emphasis 
on the relevance of fragment ion intensity to proteomic strategies, 
the importance of m/z values cannot be minimized. Because a 
wide variety of MS platforms are being applied to proteomics, it 
is of utmost importance that proteome researchers be aware of 
the mass resolution and mass accuracy performance characteristics 
of the mass analyzer being used. Such information is essential 
for the appropriate setting of precursor and fragment ion mass 
tolerances, and the specification of average versus monoisotopic 
masses at the database search stage.

Different from the popular algorithms mentioned above, 
algorithms incorporating intensity do not work under the assump-
tion that the all amino acid pairs and peptide patterns dissociate 
non-selectively to generate peaks without discrimination in 
intensity. Though the appearance of a given spectrum is difficult 
to predict, results have shown that given the same experi-
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mental conditions mass spectra are reproducible (33, 37, 46, 57). 
Schutz and colleagues assessed this reproducibility by using an 
ion trap dataset produced by the same instrument and parameters 
via three different methods: correlation between the intensities of 
two spectra as a measure of their similarity, normalized dot 
product of both the peak intensities from pairs of spectra, and 
the square root of the intensities (59). They found that MS/MS 
spectra, especially of peptides with low charge states, exhibit 
reproducible fragmentation intensities and patterns, which enables 
the prediction of peak intensity. Newer algorithms that incorporate 
complex intensity models that are based on either probability or 
chemical properties will be discussed below.

Elias and coworkers used a probabilistic decision tree – specifically, 
a treelike feather extracting graph, which requires the members of 
each branch to have similar properties – to model the probability of 
observing certain peak intensities in a mass spectrum from 27,266 
high quality spectra (33). The most confident true matches from 
SEQUEST were selected and decision trees were generated using 
63 different attributes, including b ion length, y ion length, fraction 
of basic residues, and peptide length. Each node of the tree represents 
a chemical property that can separate the intensity into different 
bins, and the likelihood that a certain fragment ion peak will have 
a certain intensity that can be calculated from the distribution of 
the sizes of the resulting branches. With the input of a predicted ion 
from a candidate sequence, the likelihood of yielding the measured 
intensity in the experimental spectrum can be obtained from the 
decision tree. For both correctly matched and mismatched peptides, 
the decision trees are made and compared to serve as a guideline as 
to whether an identification is correct or incorrect. More than a 
50% decrease in peptide identification error rate was achieved 
when using this method in conjunction with SEQUEST.

Another intensity based algorithm is Narasimhan’s Multi-
nomial Algorithm for Spectral Profile-based Intensity Comparison 
(MASPIC) scorer (60). Though based on a popular random 
match assumption that the correct match should have the least 
likelihood to be achieved randomly by chance only, MASPIC 
considered the possibility of random intensity matches as an 
alternative to using m/z only. This method divides the whole 
experimental spectrum into +1, +2, and +3 zones according to the 
charge of the fragment. In each zone, peaks are binned into classes 
with descending intensity, where lower intensity classes have more 
peak members. This process converts the experimental spectrum 
into a probability profile along the m/z axis. It is more likely to 

7. Probability 
Based Algorithms
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randomly match a predicted peak from a candidate sequence into 
the lower intensity class because this class has more members, thus 
decreasing the importance of a match with decreasing intensity. 
When all predicted peaks from a candidate sequence are compared 
with this probability profile, the number of matched and unmatched 
peaks for each class is counted, and further calculations are 
performed to give a probability of matching.

Zhang reported a kinetic model for prediction of low-energy CID 
spectra from sequence in 2004, with a general idea to abandon 
the traditional statistics model used by intensity prediction efforts 
and mimic the peptide dissociation process based on kinetics 
and the mobile proton model (57). The key assumption is that 
the intensity of a fragment ion is determined by the rate of the 
dissociation pathway generating this fragment; if the rate constants 
for all fragment ion pathways are known, then the relative intensity 
of each fragment can be predicted. Collision energy, proton 
density, fragmentation rate, ion cooling rate, activation energy, 
and gas-phase basicity are considered and incorporated into the 
rate calculation of eleven different backbone cleavage pathways as 
well as side-chain cleavages and neutral losses. Based on this 
iterative calculation model, Zhang developed an algorithm called 
MassAnalyzer, which uses a Sim score to evaluate the similarity of 
a simulated and experimental spectrum (57).

The kinetic model is mainly used to confirm the results from 
popular algorithms rather than to provide independent protein 
identification. This is due to various limitations, including vari-
ability between spectra acquired on different instruments under 
different experimental conditions and the large number of param-
eters that must be considered, as mentioned above. The Resing 
group later used this model as one part of the Manual Analysis 
Emulator (MAE), a program intended to improve the validation 
of tandem mass spectra (61). Another part of this MAE program 
takes into account the proportion of the ion current (PIC), which 
represents the percentage of intensities in an experimental spectrum 
that can be derived from the peptide sequence. A higher PIC 
score means that the program was using the most intense peaks 
for peptide identification as opposed to noise and low abundance 
peaks. With the incorporation of these two intensity-related 
scores, MAE yielded a better discrimination between true and 
false matches of SEQUEST and Mascot results.

Clearly, peptide searching algorithms utilize a variety of spectral 
and chemical information to assign peptide sequences to spectra. 
Selecting a single algorithm over another will likely lead to different 

8. Chemical 
Property Based 
Algorithms
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sets of peptide and protein assignments based on the criteria that 
an algorithm uses. As briefly mentioned earlier, the use of multiple 
search algorithms has been shown to improve confidence of a 
peptide identification. Programs such as Scaffold, available from 
Proteome Software, provide an interface for direct comparison 
of MS/MS data analyzed using a variety of algorithms (15). 
As new algorithms are developed, it is important to under-
stand what spectral characteristics allow the algorithm to 
more accurately match certain spectra to peptide sequences 
while the matches for other spectra with different characteristics 
are poor. Programs such as Scaffold will allow algorithms to be 
more readily compared.

We can imagine a time in the future when our fundamental 
knowledge and computational capabilities are sufficiently advanced 
to rapidly and accurately predict theoretical MS/MS spectra for any 
given peptide sequence. This will ultimately require that different 
protonation motifs, their relative probabilities of existence, 
their relative propensities for interconversion, and their overall 
contribution to dissociation kinetics all be taken into account. 
This would be a significant advance, as theoretical sequences 
could be generated to match a measured accurate mass and the 
corresponding synthetic tandem mass spectra could be generated 
and compared to the experimental spectrum. This should, in 
principle, allow peptide sequence identification to be obtained 
even in the absence of protein level information and even in the 
absence of genomic information. In approaching this goal, it will 
be necessary to continue systematic investigation of peptide 
structure and gas-phase unimolecular ion chemistry of protonated 
peptides and to incorporate the forthcoming insights into the 
next generation of proteomic search algorithms.

9. Prospectus
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