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ABSTRACT: To interpret LC-MS/MS data in proteomics, most popular protein
identification algorithms primarily use predicted fragment m/z values to assign peptide
sequences to fragmentation spectra. The intensity information is often undervalued,
because it is not as easy to predict and incorporate into algorithms. Nevertheless, the use
of intensity to assist peptide identification is an attractive prospect and can potentially
improve the confidence of matches and generate more identifications. On the basis of
our previously reported study of fragmentation intensity patterns, we developed a
protein identification algorithm, SeQuence IDentfication (SQID), that makes use of the
coarse intensity from a statistical analysis. The scoring scheme was validated by
comparing with Sequest and X!Tandem using three data sets, and the results indicate
an improvement in the number of identified peptides, including unique peptides that are not identified by Sequest or X!Tandem.
The software and source code are available under the GNUGPL license at http://quiz2.chem.arizona.edu/wysocki/bioinformatics.
htm.
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’ INTRODUCTION

Tandem mass spectrometry is widely used in proteomic studies
because of its ability to identify large numbers of peptides from
complex mixtures. In a typical LC-MS/MS experiment, the
digested peptides are separated by one or two stages of liquid chro-
matography and ionized by electrospray ionization. The intact mass
of each peptide is measured by mass spectrometry, then the peptide
is mass-selected and fragmented to produce MS/MS spectra. These
spectra are processed by protein identification algorithms to deter-
mine peptide sequences, which, in turn, infer protein sequence. Due
to the large number of spectra generated in modern proteomic
experiments, protein identification algorithms are a necessity.

Most commonly used algorithms are designed for sequence
identification from fragmentation spectra produced by collision
induced dissociation (CID), in which peptide precursor ions
collide with inert gas molecules and dissociate. CID typically
results in fragmentation along the peptide backbone at the amide
bonds, producing predominantly N-terminal b and C-terminal y
ions. Other ion types, including neutral water and ammonia
losses and side chain cleavages, are also possible. Because the
masses of the product ions are predictable, the sequence of the
original peptide can be reconstructed from theMS/MS spectrum
by matching experimental fragment ion masses with theoretical
ones. For a long time,m/z has been themain information used by
popular algorithms, including Sequest,1 X!Tandem2 and
Mascot,3 to assign peptide sequences to fragmentation spectra.
The process consists of searching a protein database or translated
nucleotide database by m/z for possible peptide candidates,
comparing each experimental spectrum with a large number of

constructed theoretical spectra or peak lists that correspond to
candidate peptide sequences, and assigning a score to each
candidate sequence based on the similarity between the theore-
tical and experimental spectra or on the probability that their
match is not random. The strength of the match is finally eval-
uated according to the top score and the score difference between
the top and other candidates.4

One limitation of the process described above is that all the
major ions of a given series in a theoretical spectrum are assumed
to have the same intensity regardless of the properties of the
peptide; intensity information contained in an experimental
spectrum is essentially abandoned. Though in many cases the
m/z information alone is enough to provide reliable identifica-
tion, intensity can potentially improve the confidence and
generate more identifications because it is also highly dependent
on the sequence of the peptide and the amino acid residue
compositions. Preferential cleavage, for example, is expected at
the N-terminus of proline in the presence of a mobile proton or
the C-terminus of aspartic acid when no mobile proton is
available.5-7 Nevertheless, intensity is still seldom given much
weight in algorithms because of the limited ability to predict and
quantify the chemical rules of peptide fragmentation. Various
factors, including peptide length, charge state, amino acid con-
tent, and charge location, can complicate the process of gas phase
peptide dissociation and make the resulting peak intensities
difficult to predict and interpret.8
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Clearly, the use of intensity to improve peptide identification
provides an attractive prospect and efforts have been made by
different groups.9-16 Elias and co-workers, for example, used a
probabilistic decision tree—specifically, a treelike feature extracting
graph, which requires the members of each branch to have similar
properties—to model the probability of observing certain peak
intensities in a mass spectrum so as to improve peptide identi-
fication.13 Another algorithm, MASPIC, developed by Narasimhan
et al., considered the possibility of random intensity matches as an
alternative to usingm/zonly, based on the assumption that a random
match is more likely to correspond to low intensity peaks since these
peaks aremore common in tandemmass spectra.14 Zhang reported a
kinetic model for prediction of low-energy CID spectra from
sequences, assuming that the intensity of a fragment ion is deter-
mined by the dissociationpathway and the rate of the dissociation.9,12

Another intensity model which considers more peptide features and
fragmentation rules was developed by Zhou.16 Intensity is empha-
sized in these algorithms not because that it is more critical thanm/z
but because it can provide additional information that can assist with
the peptide identification.

The goal of the work presented here is to develop a simple, fast
database search algorithm that incorporates rough intensity informa-
tion to assist peptide identification. In our previously reported study
of fragmentation intensity patterns, we introduced a routine to mine
a large number of spectra with known sequences for fragment ion
intensity based on pairwise amino acid (AA) cleavage patterns, and
the relative peak intensity for each AA pair was recorded.6,7 Because
the probability that a data peak of a specific intensity corresponds to
any given AA pair cleavage is directly proportional to the probability
of that AA pair cleavage resulting in a peak of that intensity, we can
evaluatewhether the intensity for a certainAApair in an experimental
spectrum is consistent with statistical values. We applied this
approach to our SQID algorithm described in this paper. As with
other algorithms, the SQID score depends on the presence or
absence of ion series peaks at the expected m/z, but is also heavily
affected by intensity information to increase the evidence for
sequence identification. This is analogous to the manual process of
verifying peptide identifications by looking for known fragmentation
motifs (e.g., looking for enhanced cleavage at the N-terminus of
proline), but with the objectivity of using statistical information
gathered in the data-mining process.

’METHODS

Algorithm Design
SQID is designed for identification of peptides from ion trap

tandem mass spectra in LC-MS/MS experiments but with the
ability to extend to spectra acquired using different instruments or
dissociation methods (e.g., ETD, ECD) in the future, as long as
appropriate training data sets are available. It is written inC language
and has been tested in Windows XP and Windows 7 operating
systems. The software is available with source code under GNU
GPL license at: http://quiz2.chem.arizona.edu/wysocki/bioinfor-
matics.htm. SQID contains a one-time training stage to generate
intensity tables that are used in scoring. In the training stage, spectra
with known sequence are used to generate the pairwise intensity
statistical lookup tables, which quantify the probability of observing
a strong peak given a certain amino acid pair. The tables from the
training stage are stored in the algorithm and do not need to be
regenerated. The scoring process makes use of information from
the experimental spectrum and intensity tables to evaluate a match.
The algorithm design is described below.

Step 1: Collect Pairwise Cleavage Intensities. The data
set used for training contains 138033 unique D. melanogaster
(version: drosophila-7-14-2008-it) and S. cerevesiae (version:
yeast-5-04-2009-it) ion trap spectra extracted from the National
Institute of Standards and Technology (NIST) Libraries of
Peptide Tandem Mass Spectra (http://peptide.nist.gov/).17 It
is a set of spectra with known sequences and consists of singly-,
doubly-, and triply charged tryptic peptides ranging from 5 to 56
amino acid residues in length. It contains unmodified peptides as
well as peptides with carbamidomethylation of cysteine or
oxidation of methionine. Currently we do not treat these modi-
fied residues (Cþ57, Mþ16) as unique amino acids and their
cleavage intensities are combined with those of corresponding
unmodified residues (C, M). For each training spectrum, the
mass of each expected b and y ion was calculated based on the
assigned peptide sequence. Ions outside of the ion trap mass
range (high mass cutoff = 2000; low mass cutoff = (precursorm/
z)*0.28) were not included (the low and high mass cutoffs can be
adjusted as necessary to match the instrument type). The peak
intensity of each b and y ion was scaled to the most abundant
peak of its own series. The intensity information was sorted by
ion type and by the amino acid residue pair cleavage responsible
for the fragment ions. Using all training spectra, a histogram was
generated containing the relative peak intensities for every
expected peak sorted by amino acid pair. When the expected
peak was not present, a zero value was included.
Step 2: Calculate Probability of Strong Fragment Ions

for Each AA Pair. The relative abundance information for each
amino acid pair was separated into three bins: no abundance
(intensity = 0), weak (>0-33%) or strong (>33-100%). The
ranges defined as weak and strong intensity were empirically
determined and the intensity strength for a certain amino acid
pair is roughly proportional to the probability of observing a
strong peak from that amino acid pair. The probability of having a
strong peak (Pr) is defined as the number of strong peaks divided
by the total number of expected peaks for the amino acid pair
cleavage:

Pr ¼ ðnumber of strong peaksÞ = ðtotal number of expected peaksÞ

For instance, the AP pair has a y ion Pr of 0.57, meaning that
there is a 57% probability of seeing a cleavage between A and P
with a strong y ion peak (>33%). In contrast, the PA pair has a Pr
of 0.03, which means that there is only 3% probability of seeing a
strong y ion peak for cleavage of the PA pair. In general, these
values are in agreement with empirical knowledge and provide a
quantitative basis for rough peak intensity prediction given a
peptide sequence. Part of the pairwise cleavage intensity prob-
abilities are shown in Table 1. The full table is available in the
Supporting Information.
Step 3: Scoring Experimental Spectra. Experimental

spectra are assigned peptide sequences by scoring a list of
candidate peptide sequences against each spectrum. Each experi-
mental spectrum is modified by eliminating precursor ions, water
and ammonia loss products from precursor ions (mass tolerance
is the same as fragment tolerance), and isotopes (SQID uses a
simple deisotoping algorithm for ion trap data: if the two peaks
differ by 1( 0.25 and the intensity of the first peak is greater than
that of the second one, the second peak is considered to be an
isotope peak and removed. Themain purpose of deisotoping is to
ensure that isotopes of high abundance peaks will not be acci-
dentally selected as top peaks in intensity score calculation). The
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top 80 of the most abundant peaks from the simplified spectrum
are kept for scoring. For each spectrum, a list of candidate
peptides (with mass within user-defined tolerance of the pre-
cursor mass of the experimental spectrum) is generated from a
user-defined FASTA protein database. Each candidate sequence
is scored by the following method:
1. Calculate the masses of expected fragment ions from the

candidate peptide sequence (same high and low mass
cutoffs as in training). In the present work only b and y ions
are considered along with H2O and NH3 losses from b and
y ions. Doubly charged fragments are considered in the
circumstance that the precursor ion is triply charged and
the mass of the fragment is greater than 900. The value of
900 was empirically determined based on the fact that we
seldom see doubly charged ions at m/z < 450.

2. Count the number of matched peaks in the experimental
spectrum corresponding to the masses of the expected ions
for the candidate sequence, within a user defined fragment
threshold. If an expectedwater loss or ammonia loss product
is observed, the total number of matched peaks is increased
by 0.5. The number of matched fragments is used as a pre-
liminary score and only the top 200 candidates are retained.

3. Count the number of consecutive ion pairs for a match. For
instance, if y5 and y6 ions are found, it is counted as a
consecutive ion pair. Though in many cases consecutive ion
pairs increases almost linearly with the number of matched
ions, we show later that including them can provide better
discrimination than using the number of matched ions alone.

4. For theKmost abundant peaks in an experimental spectrum
(K depends on the mass of peptide, and equals the integer
portion of [2þmass/330]), the Pr of amino acid pairs that
result in these peaks are summed and the sum is used as the
intensity score:

P
i = 1
K Pri. The intensity score is affected by

two factors: how many top peaks are matched and how well
the corresponding intensity matches. Because the Pr of
amino acid pairs range from 0.01 to 0.72, both factors could
play an importance role depending on the sequence.

The final SQID score is calculated as:

Score ¼ ðmþ nÞ �
1þ PK

i¼ 1
Pri

1þ K � 0:155
ðeq 1Þ

where m is the number of matched peaks, n is the number of
consecutive ions pairs, Pr is the probability for a certain AA pair
to have strong peaks, and K is the number of most intense peaks
used to calculate the intensity score. In the scoring function, (m
þ n) measures the number of matched peaks and numbers of
consecutive ion pairs, and increased m and n will increase the
confidence of a match; the term (1 þ ΣPr)/(1 þ 0.155K)
measures whether the observed intensity (the numerator) is
better than the expected value (the denominator). We expect
that the average Pr of the top K peaks is greater than 0.155, the
average of all Pr values in the statistical table. A more detailed
discussion of the scoring function can be found in a latter section
of this report. The specific form of the score function was
empirically determined in a trial-and-error manner to reach opti-
mized performance using the Pacific Northwest National Labo-
ratories (PNNL) data set (the first testing data set),6,7 and then
applied to other data sets without any changes. Besides the SQID
score, a delta score is used to give further discrimination. Calcu-
lation of a delta score in SQID is the same as that in Sequest: the
difference of top score and second score was divided by the top
score, which shows the percentage difference of the second score
to the top score.
The matched peptide sequences and final scores can be reported

either as a single tab delimitedfile or as separate text files. The results
can be reported in .OUT format (mimicking Sequest output) for
importing into Scaffold18 to compare with other algorithms, as was
done in the present work. Work is in progress to allow future
versions of Scaffold to include a separate SQID input.

Performance Test
Data Sets. Three ion trap data sets were used to test the

performance of SQID:
1. PNNL data set: contains 28 311 spectra (25% singly

charged, 62% doubly charged, and 13% triply charged)
from unmodified Deinococcus radiodurans and Shewanella
oneidensis peptides collected on a Thermo LCQ ion trap
mass spectrometer.7,19,20 When these spectra were col-
lected, FT-ICR was used simultaneously for accurate mass
measurements. Each LCQ spectrum was then analyzed by
the Sequest search engine with D. radiodurans and S.
oneidensis protein databases to assign a sequence. Preli-
minary identifications of peptides with a minimum cross-
correlation score of 1.5 (Xcorr g 1.5) were validated by
measurements of Accurate Mass Tags (AMTs) from FT-
ICR (mass measurement accuracy < 10 ppm). Though
these spectra are of high quality, the error rate of the initial
assigned sequences is unclear considering the low Xcorr
threshold used. As a result, in current work we use an alter-
native strategy (see next section) to evaluate the confi-
dence of matches instead of using those initially assigned
sequences. The data set is available at http://quiz2.chem.
arizona.edu/wysocki/bioinformatics.htm. Spectra were
identified against Deinococcus radiodurans and Shewanella
oneidensis database (7984 entries).

2. Eighteen Protein Mixture data set: This data set contains
37 044 spectra collected by the Keller group, Institute for
Systems Biology, Seattle, from a mixture of 18 purified
proteins using a Thermo Finnigan ESI-ITMS.21 The data set
was collected with 22 LC-MS/MS runs, and only the most
abundant peak in each full scan was selected for fragmenta-
tion, followed by 3min of dynamic exclusion. The data set is
available at http://regis-web.systemsbiology.net/PublicData

Table 1. Pairwise Cleavage Intensity Probability Table for
Selected Amino Acid Pairs, Based on Spectra of 138 033 Singly,
Doubly, and Triply Charged Unique Peptide Sequences

amino acid pair Pr of y ion Pr of b ion

AA 0.23 0.11

AC 0.29 0.10

AD 0.20 0.06

AE 0.17 0.07

AP 0.57 0.28

AQ 0.16 0.09

DN 0.31 0.14

DP 0.70 0.41

PN 0.02 0.01

PP 0.08 0.01

YW 0.35 0.13

YY 0.31 0.11
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sets/omics_data set/. Spectra were searched against a re-
verse version of Deinococcus radiodurans and Shewanella
oneidensis database (7984 entries) plus the 18 protein mix-
ture and common contaminants (trypsin, human keratin,

protein standards for MS calibration such as bovine serum
albumin and angiotensin, etc).

3. Yeast Data set: This data set of 54 799 spectra from a
MudPIT experiment of yeast-extract was collected by the

Figure 1. Calculation of intensity score in SQID. The bottom is a labeled experimental spectrum when matching it to the candidate sequence
YEFGIFNQK 2þ. The most abundant peaks used for the intensity score calculation are circled. The numbers above b ions and below y ions are the
probabilities of observing strong peaks with Pr values extracted from the intensity table.

Figure 2. Plot of q-value versus number of identified peptides showing the effect of individual components in the SQID score function for (a) singly, (b)
doubly, and (c) triply charged peptides. More peptides were identified when adding consecutive ion pairs as well as the intensity related terms to the
scoring function.

http://pubs.acs.org/action/showImage?doi=10.1021/pr100959y&iName=master.img-001.jpg&w=311&h=180
http://pubs.acs.org/action/showImage?doi=10.1021/pr100959y&iName=master.img-002.jpg&w=486&h=345
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students (group A) of Dr. Andrew Link during the 2006
Cold Spring Harbor Laboratory Proteomics course, on a
Thermo LTQ ion trap mass spectrometer.22 These
MudPIT data include six SCX/RP LC separations and
the top five most abundant peaks in each full scan were
selected for fragmentation. The raw file is available at:
http://www.mc.vanderbilt.edu/root/vumc.php?site=msrc/
bioinformatics&doc=21164. Spectra were identified against
a yeast database (14 590 entries) extracted from the NCBI
nonredundant database (ftp.ncbi.nih.gov/blast/db/fasta/).
All sequences with “yeast” or “Saccharomyces cerevisiae” in
the description line were included.

Search Parameters and False Discovery Rate Determi-
nation. The three data sets above were converted to .DTA file
format using Bioworks (Version 3.2). Sequest (Version 28, rev.12)
and X!Tandem (Version Tornado 2008.02.01.3) were run simul-
taneously with SQID to evaluate the performance of SQID.
Sequest was chosen because it uses a similar scoring that involves
no expectation value calculation; X!Tandem was chosen because it
is open source and based on expectation values. All algorithmswere
used with a parent mass tolerance of 1.5 Da and a fragment mass
tolerance of 0.5 Da, and a maximum of two missed tryptic cleavage
sites. Refinement for X!Tandem was disabled, and the maximum
valid E-value for reporting was set to 10 000. PNNL and 18 protein
mixture data sets were searched with semitryptic cleavage (tryptic
required at one terminus only) andwithout chemicalmodifications.
The yeast data set was searched with full tryptic cleavage (both

termini) and with variable modification of Cþ57 (carbamido-
methylation) andMþ16 (oxidation). These modified amino acids
are treated as C and M in the SQID intensity score calculation.
For the PNNL data set and the yeast data set, the false dis-

covery rate (FDR) was determined using a target-decoy database
search strategy. The database mentioned above was appended
with a reverse database using “decoy.pl” program from Matrix
Science (http://www.matrixscience.com/help/decoy_help.html#
WHAT). At a certain score threshold, the spectra matched to
target sequences were labeled “Target” and the ones matched to
decoy sequences were labeled “Decoy”. The false discovery rate
(FDR) was calculated as: FDR = (2 � Decoy)/(Target þ
Decoy).23 FDR is further expressed as a q-value,24 which is the
minimum FDR threshold at which a given match is considered
positive. For easier understanding, the q-value can be regarded
as a measurement of FDR.
For the 18 protein mixture data set, an identification was

assumed to be “True” in the circumstance that the top hit belongs
to any of those 18 proteins or common contaminants. At a score
threshold which allows “x” spectra (among which “y” of them are
true) to pass, FDR was simply calculated as: FDR = 1 - y/x.

’RESULTS AND DISCUSSION

Calculation of Intensity Score
Intensity information is incorporated into SQID by using

statistical intensity tables. Figure 1 is an example of how the intensity
score is calculated. For the experimental spectrum with precursor

Figure 3. Comparison of SQID, Sequest and X!Tandem by plotting q-value (a measure of FDR) versus identified peptide-spectrum matches for the
PNNL data set. (a) Singly charged peptides. (b) Doubly charged peptides. (c) Triply charged peptides. (d) Combination of all charge states.

http://pubs.acs.org/action/showImage?doi=10.1021/pr100959y&iName=master.img-003.jpg&w=422&h=333
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MHþ 1144.8, the top five peaks are used for intensity scoring.Given
the candidate sequence YEFGIFNQK2þ, SQIDwill first determine
that the top five peaks (integer portion of [2þ (1144.8/330)]) are
matching to two b ions (b2, b5) and three y ions (y4, y6, y7), which
correspond to EF and IF pairs for b ions and EF, FG and IF pairs for
y ions. By looking up the intensity table, the probabilities to have
strong (>33%) peaks (Pr) for each ion pair are 0.13 (EF pair, b2
ion), 0.18 (IF pair, b5 ion), 0.32 (EF pair, y7 ion), 0.34 (FG pair, y6
ion) and 0.42 (IF pair, y4 ion). The sum of the above values returns
the intensity score. From the graph, it can be clearly seen that the Pr
of the top five peaks (shown in red) are among the largest compared
with Pr for other peaks (in black), which means that the most
abundant peaks in the spectrum are also expected to be statistically
strong based on the training set. In general, a higher intensity score
indicates that the statistical fragmentation trends are reflected in the
match so the confidence of the identification is increased.

Effect of Individual Components in the SQID Score Function
In addition to the number of matched ions used in most

algorithms, the SQID score function (eq 1) involves two features
to improve peptide identification: consecutive ion series n and
intensity (1þΣPr)/(1þ 0.155K). To evaluate their contributions,
four searches were conducted using the PNNL data set: (1) A
“Standard SQID search” using eq 1, with Pr values adopted from
probability table (variable intensity). (2) “With constant intensity”
for each ion type, where the Pr value is 0.22 for y ions and 0.09 for b
ions. These are the average Pr values for each ion type. (3) “No
intensity”: both

P
i = 1
K Pri and K equal zero, which completely

removes the effect of intensity and ion type. The score function

equals m þ n. (4) “No intensity, no consecutive ion series”. The
score equals the number of matched ions m. For each search, the
results were ranked by the top scores from high to low, then FDR
and q-values were determined as described earlier. By plotting q-
value versus the number of peptide hits, Figure 2 showed that more
peptides were identified when adding consecutive ion pairs as well
as the intensity related terms to the scoring function. From the plots,
it should be noticed that by using the number ofmatched ions alone
(m), a significant number of peptides can be identified (orange dot-
dashed lines). This illustrates that m/z is powerful information for
peptide identification. By adding consecutive ion series (score
function is now m þ n), the performance increases as charge state
increases (green dotted lines). This may be explained by the fact
that higher charged peptides normally have longer sequences and
more theoretical peaks, which will increase the chance of finding
consecutive ion pairs. At 0.05 q-value cutoff, the performance
improved 8% for doubly charged spectra. Adding an intensity term
with a constant intensity (blue dashed line) will give a score bonus
when a theoretical peak ismatched to a high abundance peak, with a
higher bonus for y ions and lower bonus for b ions. This step gave an
additional 6% (based on “no intensity search”) for doubly charged
spectra at 0.05 q-value cutoff. Finally, the standard SQID score (red
solid line), which gives a statistically determined score bonuswhen a
theoretical peak is matched to a high abundance peak, improved the
overall performance by another 4% (based on “constant intensity”)
for doubly charged spectra at 0.05 q-value cutoff. The actual
performance boost differed for different charge states and q-value
cutoffs, for example, at 0.005 q-value cutoff (2þ), “Standard
SQID search” outperformed “constant intensity” by 13.4% if the

Figure 4. Cmparison of SQID, Sequest and X!Tandem by plotting q-value (a measure of FDR) versus identified peptide-spectrum matches for the 18
protein mixture data set. (a) Singly charged peptides. (b) Doubly charged peptides. (c) Triply charged peptides. (d) Combination of all charge states.

http://pubs.acs.org/action/showImage?doi=10.1021/pr100959y&iName=master.img-004.jpg&w=403&h=317
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differences between “No intensity” (green dotted line) and
“Standard SQID search” (red solid line) were counted as the
contribution of intensity incorporation, normally the value was in
the range of 5-15%.

Comparison of Algorithms
A completely objective comparison of algorithms is always

difficult because each algorithm uses different spectrum preproces-
sing methods, different scoring schemes and different score report-
ing. In the spectrum preprocessing step, Sequest preprocesses the
spectrum by keeping the top 200 peaks and separates the spectrum
into ten bins for normalization. SQID keeps the top 80 peaks after
removing parent related peaks and obvious nonmonoisotopic

peaks. X!Tandem simply keeps the 50 most abundant peaks by
default. In term of score report, X!Tandem reports “E-value” and a
much less important hyperscore, while SQID and Sequest report
the main scores as well as delta scores. In this work, the default
spectral preprocessing methods were used, and only the main
scores, Xcorr, SQID score and E-value were used for a relatively
fair comparison. It is important to note that these parameters can
potentially affect the search results demonstrated below.

SQID was compared with Sequest and X!Tandem using the
PNNL, 18 protein mixture, and yeast data sets. The main scores for
each algorithm, SQID score, Xcorr and E-value, were sorted for
filtering and q-value determination. Figures 3, 4, and 5 compares the

Figure 5. Comparison of SQID, Sequest and X!Tandem by plotting q-value (a measure of FDR) versus identified peptide-spectrum matches for the
yeast data set. (a) Singly charged peptides. (b) Doubly charged peptides. (c) Triply charged peptides. (d) Combination of all charge states.

Table 2. Unique Peptide Overlap Table for PNNLData Set at
0.05 q-Value Cutoffa

charge

ID set 1þ 2þ 3þ total

SQID, Sequest, Tandem overlap 2886 7777 860 11 523

SQID, Sequest overlap 1146 3695 983 5824

SQID, Tandem overlap 680 1198 95 1973

Sequest, Tandem overlap 227 88 89 404

SQID only 625 1889 301 2815

Sequest only 832 730 365 1927

Tandem only 259 479 240 978
aTotal of 22 135 unique peptides are identified by SQID, compared with
19 678 by Sequest and 14 878 by X!Tandem.

Table 3. Unique Peptide Overlap Table for 18 Protein
Mixture Data Set at 0.05 q-Value Cutoffa

charge

ID set 1þ 2þ 3þ total

SQID, Sequest, Tandem overlap 18 139 47 204

SQID, Sequest overlap 3 24 16 43

SQID, Tandem overlap 4 9 1 14

Sequest, Tandem overlap 2 2 7 11

SQID only 0 12 19 31

Sequest only 3 3 9 15

Tandem only 8 2 2 12
aTotal of 292 unique peptides are identified by SQID, compared with
273 by Sequest and 241 by X!Tandem.

http://pubs.acs.org/action/showImage?doi=10.1021/pr100959y&iName=master.img-005.jpg&w=400&h=318
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search results of SQID, Sequest and Tandem for each data set, at
each charge state. Tables 2, 3, and 4 list the unique peptide (no
duplicated sequences) overlap table for these data sets at 0.05 q-
value cutoffs. The performance of SQID varied for different data
sets, charge states and q-values. For the PNNL data set, it can be
seen that SQID yielded similar performance with Sequest for singly
and triply charged peptides, but had much more identification for
doubly charged peptides, especially at low q-value cutoffs. At a q-
value of 0.05, a total of 22 135 unique peptides were identified by
SQID, compared with 19678 by Sequest and 14 878 by X!Tandem
(12% and 48% more identification). The 18 protein mixture data
set showed a smaller difference between SQID and Sequest at all
charge states, but X!Tandem still lagged behind. At 0.05 q-value
cutoff, 292, 273, and 241 unique peptides were identified by SQID,
Sequest and X!Tandem, respectively. For the yeast data set, SQID
exhibited strong performances for all charge states in a wide
confidence range. At q-value cutoff 0.05, the number of unique
peptides lead Sequest or X!Tandem by 25% (4355 for SQID, 3319
for Sequest and 3501 for X!Tandem). It was also noted that
compared with X!Tandem, Sequest showed a reduced performance
for this data set. This may be due to the fact that the spectra are

relatively noisy, and Sequest relies primarily on the number of
matched ions and keepsmore peaks in spectrum preprocessing. For
all three data sets, SQID identified a significant number of unique
peptides that were not identified by either Sequest or X!Tandem,
and the overlap regions between SQID and Sequest or SQID and
X!Tandem were normally larger than the region between Sequest
and X!Tandem (Tables 2, 3, and 4). SQID also showed a better
discrimination power at lower q-value cutoffs, which can be seen
from the figures.

The performance difference between SQID and other algo-
rithms can be attributed to many factors including spectrum
quality, spectrum preprocessing, the incorporation of intensity,
consecutive ion series, etc., and it is very difficult to individually
quantify each of these terms. Here we show as examples two
spectra where intensity scoring played important roles. Figure 6a
is an example peptide (TKIPAVFK 2þ, from one of the 18
proteins) that was identified by SQID but missed by both
Sequest and X!Tandem. The spectrum contains two dominant
cleavages (IP, KI) and the other fragments are very small. SQID
identified this peptide with 8.5 fragments, 5 consecutive ion
series, and a very high intensity score 1.44 (for the top 4 peaks).
The final SQID score was 20.33, which was 100% confident (q-
value equals 0 at 20.33). This peptide ranked eighth in Sequest
with a Xcorr 1.61; X!Tandemmissed this identification, and got a
wrong hit with E-value 4.7. In contrast, Figure 6b is a pep-
tide (AAANFFSASCVPCADQSSFPK 2þ, from one of the 18
proteins) that was identified by Sequest and X!Tandem but
missed by SQID. Though there were a high number of fragment
matches, themost abundant peaks essentially can not bematched
to any fragments, which gave an intensity score 0. This greatly
reduced the final SQID score (the peptide scored 5.35, ranked
sixth). Sequest identified this peptide as a top hit with Xcorr 3.73
(100% confident) and X!Tandem identified it with E-value
0.0084 (99% confident).

Further Comparison with Sequest
Because neither SQID nor Sequest are probability based, it is

more informative to compare their scores, especially when they

Table 4. Unique Peptide Overlap Table for Yeast Data Set at
0.05 q-Value Cutoffa

charge

ID set 1þ 2þ 3þ total

SQID, Sequest, Tandem_overlap 42 1595 724 2361

SQID, Sequest overlap 3 227 209 439

SQID, Tandem overlap 83 349 83 515

Sequest, Tandem overlap 0 137 94 231

SQID unique 57 580 403 1040

Sequest unique 1 166 121 288

Tandem unique 15 246 133 394
aTotal of 4355 unique peptides are identified by SQID, compared with
3319 by Sequest and 3501 by X!Tandem.

Figure 6. Example spectra that are (a) identified by SQID but missed by Sequest and X!Tandem (TKIPAVFK 2þ) and (b) identified by Sequest and X!
Tandem but missed by SQID (AAANFFSASCVPCADQSSFPK 2þ).

http://pubs.acs.org/action/showImage?doi=10.1021/pr100959y&iName=master.img-006.jpg&w=413&h=219
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are matching the same peptide sequence to the same spectra. We
extracted the doubly charged spectra that reached the same
peptide identifications by SQID and Sequest in the 18 protein
mixture data set. Of the 18496 spectra of doubly charged
peptides, only 2571 (13.9%) identifications were overlapping
by SQID and Sequest, among which 1912 (74.4% of 2571)
belonged to the 18 proteins or contaminations (True) and the
remaining 659 belonged to reverse proteins (False). Figure 6a
shows the plot of Xcorr with (m þ n), the SQID score without
the intensity part, and Figure 6b plots Xcorr with the entire SQID
score (with the intensity part incorporated). It can be seen that
(m þ n) is almost proportional to Xcorr for both true and false
identifications. However, the full SQID score increases much
slower than Xcorr for false identifications in Figure 7b, and a
better separation between true and false is achieved. The two
bold lines are the corresponding Xcorr and SQID score thresh-
olds (experimentally determined from Figure 4b) for 0.05 q-
value cutoffs. At this confidence level, the peptides in the upper-
right corner (Xcorr g 2.07, SQID score g 11.97) can be
identified by both algorithms; the peptides in the upper-left
corner (Xcorr < 2.07, SQID score g 11.97) will be identified
only by SQID and the peptides in the lower-right corner will be
identified only by Sequest. Therefore, the plot suggests that
combining different algorithms is potentially the most beneficial
approach for maximizing the number of confident hits.

’CONCLUSIONS

In general, SQID shows improved performance compared
with popular algorithms as shown by results for three different
data sets, with a large number of unique identifications. Combin-
ing SQID with other algorithms will thus be potentially bene-
ficial, such as increasing the number of peptide hits and the
confidence of identifications. SQID also has the potential to be
applied to electron transfer dissociation (ETD) spectra as long as
corresponding intensity tables are elucidated. By analyzing over

10 000 high resolution ETD spectra from the Coon group, the
University of Wisconsin-Madison, we found that the peak
intensities in ETD spectra are also highly dependent on the
amino acid composition, for example, amino acid pairs contain-
ing basic residues tend to have enhanced cleavage, while pairs
containing hydrophobic residues have weaker intensities. This
study could help intensity prediction in ETD, and at the same
time, provide evidence to clarify the controversial dissociation
mechanisms. As a new algorithm, SQID still requires further
optimization to improve the overall performance. Future efforts
will include creating intensity histograms for other instrument
types (e.g., Q-TOF, Orbitrap) and proteases (e.g., GluC, AspN,
chymotrypsin) to enable SQID searches on these data, incorpor-
ating different intensity histograms corresponding to specific
sequence motifs, combining SQID score and delta score to give a
single discrimination score, and developing programs that
directly modify scores from other search engines.
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Figure 7. Plot of Xcorr versus (a)mþ n (numbers of matched peaks and numbers of consecutive pairs) and (b) SQID score for 2571 peptide-spectrum
matches extracted from the 18 protein mixture data set. Every data point is scored by Sequest and SQID using the same experimental spectrum and the
same peptide sequence. The blue spots are true identifications and red spots are false identifications.
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