Supporting Information

Ihms et al. 10.1073/pnas.1315281111

SI Materials and Methods

Isothermal Titration Calorimetry. Concentrated *tpR* RNA-binding attenuation protein (TRAP) and anti-TRAP (AT) stock solutions were dialyzed extensively against sample buffer (50 mM sodium phosphate, 100 mM NaCl, 0.5 mM tryptophan, 0.02% NaN$_3$) at pH 7 or 8. Titrations were carried out on an iTC200 system (GE Healthcare) using 30 injections (1.5 μL), except for the first injection, which was 0.5 μL. Data were analyzed using the software package Origin V.7 (OriginLab) and fit using the built-in single-site binding model provided by Microcal.

Analytical Ultracentrifugation. The predicted hydrodynamic properties of putative TRAP+AT complexes were calculated with HYDROPRO (1) on all-atom models built from available crystal structures. The effect of the six unstructured N-terminal residues of TRAP upon the calculated sedimentation coefficients was assessed by modeling and was determined to be negligible. TRAP$_{1-129}$ complexes were modeled by superimposing a fragment of the TRAP$_{1-129}$+6AT$_3$ complex structure [Protein Data Bank (PDB) ID code 2ZP8] containing one AT$_3$ and the two contacting TRAP protomers onto adjacent protomers of the TRAP$_{1-129}$ crystal structure (PDB ID code 1WAP). The translational and rotational matrices necessary to place AT$_3$ at each potential TRAP binding site were obtained by superimposing free AT$_3$ (PDB ID code 2K08) on the AT$_3$ portion of the hybrid AT$_3$+TRAP$_{1-129}$ coordinates using University of California, San Francisco (UCSF) Chimera (2).

Small-Angle X-Ray Scattering. Envelope densities used in the figures were visualized in UCSF Chimera with SITUS density maps generated from the averaged bead models by pdb2vol (3) using a voxel spacing of 6 Å and Gaussian smoothing at a half-radius of 6 Å.

Comparative fitting of experimental small-angle X-ray scattering (SAXS) profiles was achieved by calculating the predicted scattering profiles of putative TRAP-AT structures built from the averaged GASBOR models arranged using the transformation matrices obtained previously. For fits derived from complexes containing only a single TRAP molecule, the transformation matrices were used to build all potential unique and sterically unhindered TRAP$_{1-129}$+1-5AT$_3$ complex structures (18 total) from the averaged GASBOR envelopes of the components. Subsequently, CRYSOLO was used to calculate their predicted scattering curves, which, along with the regularized scattering curves for free TRAP$_{1-129}$ and AT$_3$, were compiled into a form factor input file for OLIGOMER (4). OLIGOMER implements a nonparametric least-squares method to determine the volume fractions for possible components in experimental data. For fits obtained from complexes containing multiple TRAP molecules, a library of complex scattering curves was built in a manner similar to that described above. Fitting then was performed using a custom software program based on the minimal ensemble method used by EOM (5) and BILBOMD (6).

NMR. Comparison 1H,15N heteronuclear single quantum coherence (HSQC) NMR spectra of AT and N-formyl AT (fAT) were obtained by expression of AT in minimal medium with 15N-ammonium as the sole nitrogen source and purified as previously described (7). A native control spectrum was obtained on the pooled AT sample after dialysis against 50 mM sodium phosphate, 100 mM NaCl, 2 mM DTT, 0.02% NaN$_3$, at pH 8. After acquisition, the AT and formyl-AT components present in the NMR sample were separated by denaturing reverse-phase HPLC. Fractions containing pure fAT were lyophilized and refolded as previously described (7), and the 1H,15N HSQC spectra of refolded formyl-AT were acquired. Both experiments were performed at 55 °C on a Bruker DRX 600 MHz spectrometer equipped with a triple-resonance inverse TXI Cryo-Probe. Data were processed in NMRPipe (8) and analyzed in NMRView (9).

Ion Mobility Mass Spectrometry. For ion mobility mass spectrometry, the instrument used a traveling wave ion mobility drift cell (10) to separate ions based on their collisional cross-section differences resulting from differences in size, shape, and charge. Mobility-separated ion packets reach the time-of-flight analyzer for m/z measurement at different drift times, generating a 2D spectrum. The ions from a single protein species display multiple peaks in the mass spectra as a continuous charge-state distribution. The masses of the species then can be determined by deconvoluting the charge-state distribution.

The experimental masses were determined from the m/z and assigned charge states by manually fitting the charge-state distribution to the lowest SD as shown in Table S1 (after the ± sign in the “Measured Mass” column). The deviations from the measured to the theoretical mass are listed in the right-most column in the table. Positive deviation of experimental mass from theoretical mass usually is caused by the noncovalent attachment of salt and buffer molecules, which can be quite heterogeneous and vary depending on experimental conditions. The assignments in the table are the most plausible stoichiometry based on the measured molecular weight. Some mass species detected experimentally may match to several possible structures.

Fig. S1. Overview of the role of TRAP in regulating the trp operon in Bacillus subtilis. Undecameric TRAP directly senses the cellular concentration of tryptophan (Trp) and upon tryptophan binding is activated to bind specific sequences in the 5′-UTR of genes encoding enzymes responsible for tryptophan biosynthesis. TRAP binding results in remodeling of the RNA structure and thus can exert both transcriptional and translational-level control. TRAP can be inhibited from RNA binding by trimeric AT, which condenses together multiple TRAP rings, thereby occluding their RNA-binding surfaces. AT is up-regulated in response to accumulating uncharged tRNA^Trp via a translational T-box mechanism and exists in a pH-dependent equilibrium between an inactive dodecameric form, AT_{12}, and the TRAP-binding-competent trimeric form, AT_{3}.

Fig. S2. Isothermal titration calorimetry shows an apparent affinity of 1 μM of TRAP for FAT. Representative data from titrating TRAP (1.76 mM monomer concentration) into FAT (0.097 mM monomer concentration) in the presence of excess (3 mM) tryptophan, at 15 °C. (Upper) Experimental thermogram. (Lower) Enthalpies per injection. The molar ratio is defined in terms of TRAP_{11}:AT_{3}. Integrated enthalpies are fit to a single-binding-mode model described by stoichiometry n, affinity K, and bending enthalpy ΔH. Best-fit values were 0.24 ± 0.04, 1.09 ± 1.0985 M⁻¹, and 2.4 ± 0.6 kcal·mol⁻¹, respectively. An n value of 0.24 corresponds to an apparent stoichiometry for saturation of ~4 AT_{3} per TRAP_{11}.
Fig. S3. Sedimentation velocity analyses of TRAP, fAT, and AT mixtures. (A) Experimental fringe displacement traces of TRAP alone (gray circles) and SEDFIT fits (blue lines) at pH 8; every 10th scan is shown. (B) Continuous sedimentation coefficient distributions for TRAP and fAT also show predominantly single sedimenting species for the components, although some formation of AT₁₂ may be present at 3.9 Svedberg. (C) Fringe displacement traces for samples prepared with 1:1 equivalents of AT₃:TRAP₁₁ at pH 8 reveal significantly slower sedimenting species than at neutral pH and predominantly fewer species. Experimental data are gray circles; the SEDFIT fits are in red; every 10th scan is shown. (D) Sedimentation coefficient distributions for samples containing 1, 3, and 6 AT₃ per TRAP₁₁ at pH 8. The vertical dashed line shows the sedimentation coefficient for TRAP₁₁-5AT₃ predicted by HYDROPRO. (E) Sedimentation coefficient distributions for TRAP + native (deformylated AT) at pH 7.
Fig. S4. SAXS data at saturating AT conditions can be reasonably fit with single-TRAP complexes, but data at low AT:TRAP ratios cannot. (A) OLIGOMER fits from profiles of free AT and only single-TRAP complexes to experimental data acquired from samples at 1:1 AT:TRAP ratios. (Inset) Deviation from experimental data (I_{exp}/I_{fit}) for each fit. (B) OLIGOMER fitting to experimental data acquired from samples containing 6:1 AT:TRAP. Discrepancies in fits at high scattering angles for both panels may arise from structural flexibility not present in the component models used to generate the TRAP-AT complexes. (C) All 18 possible (sterically allowed) unique TRAP$_{11}$-5AT$_3$ complex configurations assembled from the SAXS envelopes of the components generated by GASBOR.
Fig. S5. Ion mobility mass spectra of fAT and TRAP. (A) Ion mobility mass spectrum of *B. subtilis* fAT. (B) Ion mobility mass spectrum of *B. subtilis* TRAP-tryptophan. The formation of stacked TRAP rings has been observed previously (see text).

Table S1. Complex masses observed in ion-mobility mass spectrometry of AT and TRAP samples alone

<table>
<thead>
<tr>
<th></th>
<th>Measured mass, Da</th>
<th>Theoretical mass, Da</th>
<th>% mass error (measured – calculated), Da</th>
</tr>
</thead>
<tbody>
<tr>
<td>fAT<sub>3</sub></td>
<td>17,229 ± 0.3</td>
<td>17,229</td>
<td>−0.20 (−0.001)</td>
</tr>
<tr>
<td>TRAP<sub>11</sub></td>
<td>91,858 ± 43</td>
<td>91,613</td>
<td>245 (0.27)</td>
</tr>
<tr>
<td>TRAP<sub>12</sub></td>
<td>100,362 ± 105</td>
<td>99,942</td>
<td>420 (0.42)</td>
</tr>
</tbody>
</table>

Table S2. Complex masses observed in ion-mobility mass spectrometry of TRAP-AT mixtures

<table>
<thead>
<tr>
<th>Measured mass, Da</th>
<th>Possible identity</th>
<th>Calculated mass, Da</th>
<th>% mass error (measured – calculated), Da</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5:1 AT<sub>3</sub>:TRAP<sub>11</sub></td>
<td>94,034 ± 70</td>
<td>1TRAP<sub>11</sub>:11trp</td>
<td>93,860</td>
</tr>
<tr>
<td></td>
<td>111,760 ± 37</td>
<td>1TRAP<sub>11</sub>:11trp:1AT<sub>3</sub></td>
<td>111,089</td>
</tr>
<tr>
<td></td>
<td>205,165 ± 179</td>
<td>2TRAP<sub>11</sub>:2trp:1AT<sub>3</sub></td>
<td>204,948</td>
</tr>
<tr>
<td></td>
<td>205,518 ± 43</td>
<td>2TRAP<sub>11</sub>:2trp:2AT<sub>3</sub></td>
<td>204,785</td>
</tr>
<tr>
<td></td>
<td>223,279 ± 111</td>
<td>3TRAP<sub>11</sub>:3trp:1AT<sub>3</sub></td>
<td>298,808</td>
</tr>
<tr>
<td></td>
<td>299,431 ± 48</td>
<td>3TRAP<sub>11</sub>:3trp:2AT<sub>3</sub></td>
<td>316,037</td>
</tr>
<tr>
<td></td>
<td>316,878 ± 234</td>
<td>3TRAP<sub>11</sub>:3trp:7AT<sub>3</sub></td>
<td>308,322</td>
</tr>
<tr>
<td>2.0:1 AT<sub>3</sub>:TRAP<sub>11</sub></td>
<td>92,648 ± 111</td>
<td>1TRAP<sub>11</sub>:11trp:1AT<sub>3</sub></td>
<td>111,089</td>
</tr>
<tr>
<td></td>
<td>110,626 ± 85</td>
<td>1TRAP<sub>11</sub>:11trp:2AT<sub>3</sub></td>
<td>128,318</td>
</tr>
<tr>
<td></td>
<td>128,251 ± 52</td>
<td>1TRAP<sub>11</sub>:11trp:3AT<sub>3</sub></td>
<td>145,547</td>
</tr>
<tr>
<td></td>
<td>145,952 ± 67</td>
<td>1TRAP<sub>11</sub>:11trp:4AT<sub>3</sub></td>
<td>162,776</td>
</tr>
<tr>
<td></td>
<td>163,367 ± 148</td>
<td>1TRAP<sub>11</sub>:11trp:5AT<sub>3</sub></td>
<td>180,005</td>
</tr>
<tr>
<td></td>
<td>180,411 ± 144</td>
<td>2TRAP<sub>12</sub>:24trp<sup>*</sup></td>
<td>20,785</td>
</tr>
</tbody>
</table>

[*]TRAP has been observed to form both 11- and 12-membered rings (see text).

[†]TRAP frequently loses bound tryptophan, exhibiting a lower than expected mass.

ihms et al. www.pnas.org/cgi/content/short/1315281111