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ABSTRACT

Introduction: Despite apparently complete surgical resec-
tion, approximately half of resected early-stage lung cancer
patients relapse and die of their disease. Adjuvant
chemotherapy reduces this risk by only 5% to 8%. Thus,
there is a need for better identifying who benefits from
adjuvant therapy, the drivers of relapse, and novel targets in
this setting.
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Methods: RNA sequencing and liquid chromatography/
liquid chromatography–mass spectrometry proteomics data
were generated from 51 surgically resected non–small cell
lung tumors with known recurrence status.

Results: We present a rationale and framework for the
incorporation of high-content RNA and protein measure-
ments into integrative biomarkers and show the potential of
this approach for predicting risk of recurrence in a group of
lung adenocarcinomas. In addition, we characterize the
relationship between mRNA and protein measurements in
lung adenocarcinoma and show that it is outcome specific.

Conclusions: Our results suggest that mRNA and
protein data possess independent biological and clinical
importance, which can be leveraged to create higher-
powered expression biomarkers.
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Introduction
Five-year survival of patients with surgically resected,

early-stage lung adenocarcinoma ranges from 50% to
70%, and adjuvant chemotherapy reduces this risk by
only a small amount.1 An accurate prediction of the risk of
tumor recurrence at the time of surgery could potentially
spare patients the toxicity of adjuvant chemotherapy and
target other patients for increased therapy and surveil-
lance. Many previous attempts have been made to predict
recurrence and prognosticate outcomes after resection of
lung adenocarcinomas; however, significant challenges to
reproducibility and implementation have prevented the
widespread use of these signatures in the clinic.2 To date,
there has been no effort to compare and integrate
high-content proteomic with transcriptomic approaches
in carefully clinically annotated cases of this disease.

In this study, we present an integrative approach
combining both transcriptomic and proteomic data. The
central hypothesis of this study is that protein and
mRNA measurements of lung adenocarcinoma tumors
encompass independent information that can be
leveraged to discover novel dysregulated genes and
integrative clinical biomarkers.

There have been multiple proteogenomics studies in
model systems, such as bacteria, yeast, and cell lines.3-5

Initial studies in humans reiterated the poor correlation
between mRNA and protein measurements, highlighting
the importance of regulation at the post-transcriptional
level.6 Recent studies in cell lines have proposed that a
greater amount of protein variation can be explained by
transcription than previously thought7; however, a picture
has emerged of bursts of mRNA transcription creating
stable changes in protein expression in response to
perturbation.8 In surgically resected tumor samples, the cell
states vary from perturbed to steady state, implying that
mRNA-protein correlation may vary as well. For example,
Wei et al.9 showed that RNA-protein correlation differs
between aging and young humans and rhesus macaques.
The discovery that mRNA-protein correlation is a pheno-
type that can be correlated with biological and clinical
outcomes necessitates further studies withmatchedmRNA
and proteinmeasurements. Large datasets ofmatched RNA
sequencing (RNAseq) and proteomics results were pub-
lished by Zhang et al.10 in colorectal and Mertin et al.11 in
breast cancer samples of convenience; however, these
studies were not designed to explore an integrative clinical
biomarker. Recently, Zhang et al.12 published a
proteogenomic dataset from high-grade serous ovarian
cancer tumors which can be separated into early and late
survivors; however, there are no significant differences for
mRNA and protein expression between the two groups.

Here, we investigate differential mRNA-protein
correlation between recurrent and nonrecurrent lung
adenocarcinoma tumors. We then leverage this differ-
ence, in combination with differential mRNA and protein
abundances to predict lung adenocarcinoma recurrence
with matched transcriptomic and proteomic data using a
novel supervised classification algorithm.
Materials and Methods
RNAseq Data Collection and Preprocessing

RNA from tumor samples resected at Vanderbilt
(Nashville, Tennessee) and MD Anderson (Houston, Texas)
was extracted from fresh frozen tissue with Qiagen RNeasy
mini kit (Hilden, Germany), converted to a poly-A selected
cDNA library, and paired-end sequenced on Illumina HiSeq
2000 (San Diego, California). Raw fastq files were filtered
for adapters and low quality, and aligned to University of
California–Santa Cruz (UCSC) human genome 19 (hg19)
reference genome with TopHat2 using default parameters.
Read counts were generated with htseq-count using
RefSeq gene definitions.13-15 RNA from tumor samples
resected at Washington University (St. Louis, Missouri)
was extracted from fresh frozen tissue, converted to a
poly-A selected cDNA library with NuGen v2 kit (Ovation,
Santa Monica, California) and paired-end sequenced on
Illumina HiSeq 2000. Raw fastq files were filtered for
adapters and low quality, and aligned to UCSC hg19
reference genome with spliced transcripts alignment to a
reference 2-pass method.16,17 Read counts were generated
with featureCounts using RefSeq gene definitions. Variants
from both RNAseq datasets were extracted with samtools’
mpileup.18,19
The MD Anderson and Vanderbilt Cohort Tumor
Tissue Preparation

Formalin-fixed paraffin-embedded (FFPE) tissues of
tumor resections collected at Vanderbilt University, MD
Anderson, and Washington University (WashU cohort)
were used in protein extraction. The Vanderbilt and MD
Anderson cohort tissue samples were deparaffnized
using sub-x xylene (Surgipath, Richmond, Illinois)
followed by rehydration in three ethanol washes as
previously described.20 Samples were homogenized in
lysis buffer containing trifluoroethanol and 100 mmol/L
ammonium bicarbonate at pH 8.0 using Sonic
Dismembrator model 100 (Fisher scientific, Pittsburgh,
Pennsylvania) at 20 W for 20 second with 30-second
intervals. The sonication step was repeated twice, and
the samples were stored on ice between sonications. The
concentration of the proteins in each lysate was
measured using bicinchoninic acid protein assay
(Thermo Fisher Pierce, Rockford, Illinois) using the
manufacturer’s protocol. A total of 200 mg of lysate was
reduced with 20 mmol/L tris(2-carboxyethyl)phosphine
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(TCEP, Pierce, Rockford, Illinois) and 50 mmol/L DTT
(Sigma-Aldrich, St. Louis, Missouri) at 60 �C for 30
minutes followed by alkylation with 100 mmol/L
iodoacetamide (Sigma-Aldrich, St. Louis, Missouri) in
dark for 20 minutes at room temperature. The
concentration of trifluoroethanol was reduced to 10% of
the total volume by diluting in 50 mmol/L ammonium
bicarbonate. The samples were digested with trypsin
(Promega Corporation, Madison, Wisconsin) at a
ratio of 1:50 (w:w) overnight at 37 �C followed by
acidification with 0.5% trifluoroacetic acid protein
digests were frozen at -80�C and lyophilized to dryness.
The samples were re-suspended in high-performance
liquid chromatography–grade water with vortexing for
1 minute and desalted using Oasis HLB 96-well mElution
plate (30 mm, 5 mg, Waters Corporation, Milford,
Massachusetts) as previously described.10
WashU Cohort Tumor Tissue Preparation
The FFPE tumor tissues were deparaffinized in xylene

followed by rehydration in ethanol as previously
described.21 The tumor tissues were homogenized in a
modified lysis buffer containing 0.2% RapiGest (Waters
Corporation) in 50 mmol/L ammonium bicarbonate. The
lysates were incubated at 105�C for 30 minutes and
stored on ice for 5 minutes. The samples were sonicated
using Sonic Dismembrator model 100 (Fisher Scientific)
at 20 W for 20 seconds with 30-second intervals. This
sonication step was repeated twice, and the samples were
incubated at 70�C for 2 hours. The protein concentration
in each lysate was determined by bicinchoninic acid
protein assay (Thermo Fisher Pierce) using the
manufacturer’s protocol. A total of 100 mg of tissue
proteins were reduced with 50 mmol/L DTT at 60�C for
30 minutes followed by alkylation with 100 mmol/L
iodoacetamide in dark at room temperature for
20 minutes. The samples were digested with sequencing
grade trypsin (Promega Corporation, Madison, Wisconsin)
at a ratio of 1:50 (w:w) and 0.01% ProteaseMax
surfactant (Promega Corporation) at 37�C for 3 hours. The
samples were acidified with 0.5% trifluoroacetic acid and
centrifuged at 14,000 g for 15 minutes. The supernatant
was collected and evaporated to dryness in a Speed-Vac
concentrator (Thermo Fisher Scientific). The samples
were stored in -80 �C until liquid chromatography
(LC)/LC–mass spectronomy (MS)/MS analysis.
The Vanderbilt and MD Anderson Cohort Peptide
Fractionation by Off-Line High pH Reverse-Phase
Chromatography

The samples (n ¼ 44) were reconstituted in 400 mL of
1.0 mol/L triethylammonium bicarbonate at pH 7.5 and
injected into the chromatography system. Tryptic peptides
were fractionated at high pH reverse-phase XBridge BEH
C18 analytical column (250 mm � 4.6 mm, 130�A, 5 mm,
Waters Corporation, Milford, Massachusetts) equipped
with an XBridge BEH C18 sentry guard cartridge. The
separation was achieved at a flow rate of 0.5 mL/min in 10
mmol/L triethylammonium bicarbonate and water at pH
7.5 (solvent A) and 100% acetonitrile (solvent B). A
multistep gradient with three linear gradients were used;
from 0 to 5% (solvent) B in 10 minutes, 5% to 35% B in
60 minutes, 35% to 60% B in 15 minutes, and 70% B for
10 minutes before reaching the initial conditions. A total
of 60 fractions were collected and recombined into 15
peptide fractions as previously described.10 The samples
were evaporated to dryness in a Speed-Vac concentrator
and stored in -80�C until LC MS/MS runs.
The Vanderbilt and MD Anderson Cohort LC-MS/
MS Analysis

The protein digests were reconstituted in 50 mL of
2% acetonitrile and 0.1% formic acid. An Eksigent
NanoLC 2D pump with an AS1 auto-sampler reverse-
phase LC system (Eksigent, Dublin, California) was used
for peptide fractionation. A total of 8 mg were injected
and separated using 0.1% formic acid (solvent A) and
0.1% formic acid in acetonitrile in a packed capillary tip
(Polymicro Technologies, Phoenix, Arizona) containing
Jupiter C18 resin (Phenomenex, 5 mm, 300�A) in-line with
a solid phase extraction column (packed with the same
resin). The gradient was programmed to desalt the
samples on the column for 15 minutes at 100% A before
separation at a flow rate of 1.5 mL/min. The separation
was achieved by changing mobile phase composition
from 100% A to 25% B in 50 minutes, 25% to 90% B in
65 minutes and held at 90% for extra 9 minutes.
Peptides eluting the column were ionized at 1.45 kV and
analyzed with a Thermo Velos Pro dual-pressure
linear ion trap mass spectrometer (Thermo Fisher
Scientific) by data dependent acquisition. The top
five MS/MS scans were acquired for every full MS scan
for an m/z range from 400 to 2000. The method was
used with an ion transfer tube temperature at 200�C;
S-lens radio frequency 65%; dynamic exclusion with a
repeat count 1 and repeat duration of 1 second for
an exclusion list size of 50 mass-to-charges; collision-
induced dissociation (CID) with normalized collision
energy of 30%, q ¼ 0.25, and activation time of 10 ms;
and the minimum intensity threshold was set to
1000 counts.
The WashU Cohort LC/LC-MS/MS Analysis
For the analysis of the WashU cohort (17 samples), LC

coupled to tandem MS was performed using a Waters
nanoacquity two-dimensional (2D) UHPLC system (Waters
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Corporation) with two reverse-phases interfaced to a
Thermo LTQ-Oribitrap Elite hybrid mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany). A total of 8
mg of protein digest reconstituted in 100 mM ammonium
formate was injected using Acquity UPLC autosampler
(Waters Corporation) and the peptides were fractionated
online at high pH before analytical separation. The
fractionation of peptides was achieved in the first
reverse-phase column (Waters BEH C18, 130�A, 1.7 mm,
300 mm, and 100 mm) at pH 10.0 in buffer A1 (20 mmol/L
ammonium formate) by varying the amounts of solvent B1
(100% acetonitrile). The column was equilibrated at 3%
B1 (v/v), which was increased to 4.7% (v/v) in 1 minute
eluting the first fraction of peptides and decreased back to
3% (v/v) B1 in the next 4 minutes. The column was held
at 3% (v/v) B1 during separation at a steady flow rate of 2
mL/min. The solvent % B1 (v/v) was increased from 4.7%,
9.0%, 10.8%, 12.0%, 13.1%, 14.0%, 14.9%, 15.8%, 16.7%,
17.7%, 18.9%, 20.4%, 22.2%, 25.8% and to 65% over 15
fractions. Each fraction eluted from the fractioning column
was loaded onto a Waters symmetry C18 trap column
(100Å, 5 mm, 180 mm � 20 mm) and desalted at a flow
rate of 20 mL/min. The analytical separation was achieved
in the second reverse-phase column (Waters HSS T3, C18,
100Å, 1.8 mm, 75 mm � 150 mm) at pH 2.4 which was
equilibrated to initial conditions; 95% (v/v) A2 (water
with 0.1% formic acid) and 5% (v/v) B2 (acetonitrile with
0.1% formic acid). The subsequent separation was ach-
ieved by three linear gradients at 38�C where the % B2
was increased from 5% to 9% in 3 minutes; 9% to 30%
over 44 minutes; 30% to 40% over 5 minutes; and 40% to
85% over 5 minutes at a flow rate of 0.5 mL/min. The
column was held at 5% (v/v) B2 from 65 to 70 minutes
before reaching initial conditions. The 2D LC was
coupled to LTQ-orbitrap Elite via a nanospray Flex ion
source (Thermo Fisher Scientific) containing a 30-mm
inner-diameter stainless steel emitter (Thermo Fisher
Scientific) with spray voltage between 1.7 kV and 1.8 kV.
The orbitrap mass spectrometer was operated in
data-dependent acquisition mode, where the top
15 MS/MS scans were acquired for every full MS-scan. The
full MS-scan was acquired in the orbitrap MS-analyzer
with resolution r ¼ 120,000 at m/z 400 for every 107

charges acquired in the ion trap MS-analyzer. This
acquisition was set to trigger MS/MS scans for the top 15
most abundant m/z peaks after CID for an automated
gain control target value of 5000 charges. The method
was programmed with an ion transfer tube temperature at
275�C; S-lens RF 55%; dynamic exclusion with a repeat
count 1 and repeat duration of 15 seconds for exclusion
list size of 500 mass-to-charges; CID with normalized
collision energy of 35%, q ¼ 0.25 and activation time of
10 ms; the minimum intensity threshold was set to
6000 counts.
Data Processing and Protein Identification
For protein identification, Myrimatch version 2.1.111

was used with a customized RefSeq human database
(version 54) and Peptitome version 1.0.42. The raw files
generated in Xcaliber software (Thermo Fisher Scienti-
fic) for all 15 fractions of each protein digest were used
in the peptide identification. The MS/MS spectra were
searched with fixed carbamidomethyl modification at
cysteine, and variable acetylation at protein N-termini,
oxidation of methionines, and deamidation at asparagine
and glutamine (only for the WashU cohort data). A
maximum of two missed cleavages were allowed for
every fully tryptic peptide (proline rule applied) with a
minimum peptide length of six amino acids. The data
were filtered in IdPicker software version 3.0.504. The
proteins present in each sample were identified with a
peptide false discovery rate (FDR) of 1% and a protein
FDR of 4.45%. Protein groups were filtered to only
include proteins with a minimum of two peptides and
with spectra required per peptide. For proteogenomic
analysis, protein groups identified in each sample were
grouped based on the gene group and the respective
number of spectral counts for each gene group per pa-
tient was recorded.
Normalization and Filtering
Both proteomics and RNAseq datasets were normal-

ized by dividing each patient column by the total number
of counts in that column, and then multiplying by 1
million to get counts per million. We then filtered out
any genes for which the median across more than half of
the patients was 0. Three thousand nine hundred sixty
genes were detected at RNA and protein levels in at least
one sample in both the Vanderbilt/MD Anderson and
WashU cohorts, and after filtering, 2286 genes remained
for downstream analysis. We only used features for
which there were matching protein and RNA features
from the same gene.
Differential Gene Expression and Correlation
We developed a novel method of differential gene

expression by comparing the rank median expression of
each group and dividing by the total number of genes to
get a number between -1 and 1. This method is robust to
outliers, simple, and nonparametric. All differential cor-
relation was computed as the absolute value of the dif-
ference between RNA-protein Spearman correlation
values within each cohort. A cutoff for significance of
0.54 was used. We chose this cutoff by taking the value
of correlation or anticorrelation necessary to achieve
significance within a single cohort (Spearman r > 0.27,
estimated p < 0.05) and multiplying by 2, that is, by
taking the minimum difference necessary between a
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significantly correlated and significantly anticorrelated
RNA-protein pair.
Construction of the Integrative Biomarker
To create an integrated biomarker of tumor recur-

rence, we use a model selection approach. For each gene
we find a set of models or functions that relate the RNA
measurements to the protein measurements in the
nonrecurrent and recurrent cohorts. Formally, we define
the functions as follows:

Proteinw fRðRNAÞ þ N
�
0; sR

2
�

(1)

ProteinwfNRðRNAÞ þ N
�
0; sNR

2
�

Where fR and fNR are the recurrent and nonrecurrent
functions and N(0,sR

2) and N(0,sNR
2) are the normally

distributed error terms of the models. After the models
are generated on a training set, the likelihood that an
expression measurement from a test sample came from a
recurrent or nonrecurrent patient is obtained by
computing the probability density of the difference be-
tween the theoretical and test protein expression values
for each model.

To learn the relationship between RNA and protein
measurements for each gene, we use L1 trend filtering,
which seeks to fit a piecewise linear function to the data.
Trend filtering controls for over-fitting with a sparsity
term which is optimized using cross-validation. We
implemented trend filtering using the R package gen-
lasso. Trend filtering seeks to optimize the following
objective function:

ð1=2ÞkProtein� fðRNAÞk22 þ l kD fðRNAÞk1 (2)

Where l � 0 is the regularization parameter, and D is
the second-order difference matrix defined in Kim
et al.22 Trend filtering enforces a piecewise linear
regression model and the number of knots, or differing
slope values, is determined by cross-validation within
the training set to optimize the number of kinks given
the noisiness of the data.

We compute the overall probability of a patient being
recurrent or nonrecurrent using Bayes’ theorem with an
uninformative prior and independent genes.
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Where Pg,j , Rg,j are the protein and RNA measure-
ments for each gene in the signature for a given patient
and M is the number of genes in the signature. To
perform feature selection to find the final gene signature,
we remove genes that are inaccurate on the training set
based on the number of incorrectly predicted log odds
ratios for each gene.

Comparison of Individual Versus Integrative
Biomarker Results

The integrative biomarker was benchmarked against
a method using similar principles, except using only
protein or RNA data alone. The individual RNA and
protein biomarkers were built using the same operation
to build the individual RNA component of the integrative
biomarker. First, samples were split into training or
testing (here we use leave-one-out cross-validation). For
each RNA and protein gene, measurements were first
divided into recurrent or nonrecurrent. Next, the vali-
dation sample’s RNA or protein values were compared to
the distributions of the training recurrent and nonre-
current samples, and a log likelihood was generated that
the validation sample came from either clinical group.
Finally, the log likelihoods were combined into a single
log likelihood using a naïve Bayesian classifier.

Functional Analysis of Dysregulated Genes
The dysregulated genes identified in this study were

examined for enrichments of regulatory factors including
RNA binding protein and microRNA binding sites. 5’ and
3’ untranslated region (UTR) coordinates for all available
transcripts were downloaded from the UCSC
Table Browser for the human genome (hg38).23 UTR
exon sequences were extracted for each transcript
using the R package BSgenome.Hsapiens.UCSC.hg38.23

Sequence motifs for 178 human RNA-binding Proteins
(RBP) binding sites (101 RBPs) were collected from the
Catalog of Inferred Sequence Binding Preferences–
RNA.24 Each UTR sequence (length L) was scanned for
each motif (length M) using a single nucleotide sliding
window providing L – M þ 1 scores. The maximum score
for each transcript was selected as the motif represen-
tative score. The set of putative targets for each RBP
motif across the whole genome were identified as the set
of transcripts with representative scores greater than
90% of the motifs’ theoretical maximum. The set of
targets were compare to the dysregulated genes to
identify the putative RBP dysregulated targets. The
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background set of targets were identified as the targets
associated with the global set of genes assayed (all genes
for which RNA and protein data was available). A hy-
pergeometric test was used to determine whether the
dysregulated genes were enriched as targets for each
RBP motif.

MicroRNA data was collected from the TargetScan
website.25 The human conservedmicroRNA family targets
for were downloaded from the database (214 microRNA
families). This provided a list of genomic coordinates for
the microRNA binding sites. Using the UCSC liftover tool,
the original hg19 binding site coordinates were converted
into the hg38 genomic coordinates. Overlap of these sites
with transcribed regions provided the set of gene targets
for each microRNA family. After identifying the set of
dysregulated microRNA targets a hypergeometric test
analogous to the RBP analysis was used to calculate the
putative enrichment for each of the microRNA targets in
the dysregulated gene set. RBP andmicroRNAmotifs with
a Benjamini-Hochberg corrected p value < 0.25 were
considered significantly enriched.
Figure 1. Gene-level mRNA-protein correlation in human
lung adenocarcinoma. mRNA protein correlation in Vander-
bilt (A) and WashU (B) datasets. (C) Histogram of mRNA-
protein correlations within each cohort. The significance of
the difference between recurrent and nonrecurrent mRNA-
protein correlations was determined by the Wilcoxon rank
sum test.
Results
Proteogenomic Analysis of Surgically Resected
NSCLC

Wecollected fresh frozen and FFPE specimens from61
patients, half selected for rapid recurrence after surgery,
and half selected for long-term (more than 3 years) sur-
vival after surgical resection. Forty-four of these patients
were recruited at Vanderbilt University andMDAnderson
(tissuewas processed at Vanderbilt for all samples), and 7
patients were recruited at WashU (Supplementary Fig. 1).
The patients were matched for recurrence and adjuvant
chemotherapy status (Table 1). RNAseq was performed
on the fresh frozen tissues and tandem LC-MS was per-
formed on the FFPE tissues. In total, 5482 and 6581
protein groups were identified in the Vanderbilt and
Table 1. Clinical Patient Attributes

Recurrent
(n ¼ 25)

Nonrecurrent
(n ¼ 26)

Male (%) 72 31
Adjuvant therapy 9 12
No adjuvant

therapy
16 14

Stage
Ia/b 8/8 6/14
IIa/b 3/4 2/1
IIIa/b 0/1 2/1

Collection Site
Vanderbilt 17 18
MD Anderson 4 5
WashU 3 4
WashU cohorts, respectively. Five thousand two hundred
eighty-four and 5,253 of these proteins were matched by
gene symbol to their corresponding mRNA in the Van-
derbilt and WashU cohorts, respectively. A total of 6577
genes were measured in at least one study, and 3960
genes were quantified in both studies.

RNA-Protein Correlation is Dependent on Tumor
Recurrence Status in Lung Adenocarcinoma

We observed high correlation of mRNAmeasurements
across patients, as well as high correlation of protein
measurements across patients, indicating that the data
generated from each site are suitable to be combined for
analysis (Supplementary Fig. 2). Median mRNA-protein
Spearman correlations were r ¼ 0.07 in the WashU
cohort (3004 genes compared) (Fig. 1A) and r ¼ 0.17 in
the Vanderbilt cohort (4656 genes compared) (Fig. 1B).
These values are lower than those found in previous
studies conducted in lung cancer (mean Spearman r ¼
0.34 and r < 0.4), colon and rectal (mean Spearman r ¼
0.47), breast (mean Pearson r ¼ 0.39), and ovarian can-
cers (mean Spearman r ¼ 0.45).12-14,26-27

Next, the pathway enrichments for low- and high-
correlated genes were studied and found similar



Figure 2. Synergistic discovery of differentially regulated genes using matched RNA and protein abundances. (A) RNA-protein
correlations within recurrent and nonrecurrent patient cohorts are shown in a scatterplot. Genes whose RNA-protein
abundances are significantly correlated or anticorrelated (uncorrected p value < 0.05) are shown in red. (B) RNA and pro-
tein differential expression is shown as the change in median rank abundance between nonrecurrent and recurrent cohorts.
Genes are differentially expressed at RNA and protein levels. (C) Overlap of genes differentially expressed at the protein and
RNA levels, as well as genes that are differentially correlated. Zero genes displayed simultaneous differential expression at
both levels and differential correlation. Please see Supplemental Methods for more information about how differential
expression and correlation was computed.
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trends to those found in previous the cancer genome
atlas studies. Interestingly, the mRNA splicing pathway,
which is enriched for poor mRNA-protein correlation in
colorectal, breast, and ovarian cancers, is enriched for
high mRNA-protein correlation in lung adenocarcinoma
(Supplementary Table 1). Aberrant splicing has recently
been implicated in lung adenocarcinoma, and may
contribute to the overall low mRNA-protein correlation
seen in this study.28

Prior research has shown that the unexplained protein
variability is not solely accounted for by technical noise,
but also post-transcriptional regulation.7 As such, we
sought to discover genes whose mRNA-protein correlation
was dependent on the clinical outcome. mRNA and protein
data were matched at the gene level and filtered by
expression to obtain a set of 2286 paired RNA and protein
measurements per lung adenocarcinoma patient (N ¼ 51,
See Materials and Methods for details). Globally, there is a
significant difference between the mRNA-protein correla-
tion of all genes in the recurrent group and in the nonre-
current group (p < 10-16 Wilcoxon Rank sum test)
(Fig. 1C). Overall, the genes we investigated were more
highly correlated in the nonrecurrent tumors (Fig. 1C).

Synergistic Detection of RNA and Protein
Dysregulation

We investigated the gene-level differences in mRNA-
protein correlation and abundances with spearman
correlation (Fig. 2A) and a 2D differential expression
method (Fig. 2B). We show that the mRNA-protein cor-
relation of individual genes can vary greatly between
recurrent and nonrecurrent tumors (Fig. 2A). We hy-
pothesized that mRNA-protein correlation itself may
contain important information about the state of the cell.
Poorly correlated mRNA and protein abundances may
reflect post-transcriptional (splicing, microRNA, RNA
localization, etc.) and post-translational (phosphoryla-
tion, ubiquitination, altered degradation, etc.) regulation.
As such, differential correlation can be used to detect
dysregulated genes in cancer, and necessitates the
collection and analysis of large clinical cohorts with
matched mRNA and protein data.



Figure 3. Translocase of inner mitochondrial membrane
50 (Timm50) is differentially correlated between recurrent
and nonrecurrent tumors. (A) Timm50 is weakly differentially
expressed at the RNA level (p < 0.05), but not differentially
expressed at the protein level (B). Timm50 differential
RNA-protein correlation between recurrent and nonrecurrent
tumors. CPM, counts per million.

Figure 4. Overview of integrative RNA-protein biomarker
discovery pipeline. (A) Patients are divided into their clinical
groups; here we use binary recurrence status to group the
patients. Regression is then performed using trendfiltering to
find a relationship between RNA and protein abundances
within each cohort. (B) This model is then used to test a
separate test sample or samples. Given a test RNA abun-
dance, the test error is calculated as the difference between
the predicted protein value and the test protein value (ar-
rows). (C) The test errors are then compared to the distri-
butions of training errors in each cohort, and a log odds ratio
is calculated (LOR1). (D) Because this integrative method
does not detect differential RNA abundances in the absence
of differential protein abundances, a second log odds ratio is
calculated by comparing the test RNA abundances to the
training RNA abundances in each cohort (LOR2).
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We found that genes can be differentially expressed
independently at the mRNA and protein levels (Fig. 2B).
Indeed, there is little overlap between genes that are
differentially expressed at the mRNA and protein levels,
including differential correlation (Fig. 2C) (differential
expression p values are reported as uncorrected p values
produced by the R package, npSeq, see Supplementary
Methods).29 Were we to only use one data type, we
would have found 66 differentially expressed proteins or
159 differentially expressed mRNAs; however, the
inclusion of both allows us to generate 325 hypotheses of
dysregulated genes. The numbers of differentially
expressed proteins and mRNAs reported by npSeq are
very low due to its stringency; however, we chose this
nonparametric approach to minimize the chance of
differential expression being driven by outliers.
Outlier-driven differential expression is not as useful in
biomarker development because it does not capture the
behavior of an entire cohort. In addition, we observed high
intragroup variability relative to intergroup variability.

We further investigated which genes were most
differentially correlated. The most differentially correlated
gene, translocase of inner mitochondrial membrane 50
(TIMM50), has highly correlated RNA-protein abundances
among nonrecurrent tumors but highly anticorrelated
abundances among recurrent tumors (Fig. 3). TIMM50
encodes the protein, Tim50, that is involved in the mito-
chondrial apoptosis pathway, is upregulated by mutant
p53, and its loss induces apoptosis in breast cancer
cells.30,31 TIMM50 is weakly differentially expressed at the
RNA level, and not differentially expressed at the protein
level, such that its discovery as a dysregulated gene in our
patient cohort requires the use of both data types.

To examine whether aberrant post-transcriptional
regulation contributed to the poor RNA-protein
Spearman correlations in recurrent patients, we search
for enriched RBPs and microRNA motifs within these
genes. This analysis of 178 RBPs and 214 miRNA family
motifs identified no significant enrichment (FDR < 0.25)
for post-transcriptional motifs within this gene set
(Supplementary Tables 2-4).
Integrating RNA and Protein Abundances for
Predicting Tumor Recurrence

We next sought to leverage the RNA and protein data
by developing a novel, comprehensive methodology to
generate integrative expression biomarkers (Fig. 4). In
brief, we separate patients into training and test cohorts,
and then further separate the training cohort according to
a binary clinical variable (Fig. 4A). In this study, the var-
iable is recurrence status. For each gene, we perform
regression using a recently developed machine learning



Table 2. Integrative Biomarker of Recurrence Leave-One-Out Cross Validation Performance

Dataypes Used Feature Selection Total (%) Nonrecurrent (%) Recurrent (%)

RNA All 24 (47) 12 (46) 12 (48)
Feature Selection 29 (57) 13 (50) 16 (64)

Protein All 18 (35) 10 (38) 8 (32)
Feature Selection 24 (47) 12 (46) 12 (48)

RNAþProtein All 19 (37) 9 (35) 10 (40)
Feature Selection 25 (49) 11 (42) 14 (56)

Integrative All 22 (43) 10 (38) 12 (48)
Feature Selection 36 (71) 20 (77) 16 (64)
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technique, L1 trend filtering, to find a piecewise-linear
relationship between RNA and protein abundances in
each cohort (Fig. 4A).22 Trend filtering produces a set of
piecewise linear equations that seek to balance over- and
under-fitting of the model. For instance, if the relationship
is highly nonlinear with a high signal-to-noise ratio, then
the model will have many knots that closely follow the
data. In the case of a highly linear or low signal-to-noise
ratio, then there will be no knots, and simple linear
regression is performed. The test samples are then
compared to the model, and an error is calculated that
represents the difference between the model-predicted
and test protein values, given the test RNA values
(Fig. 4B). Errors are then calculated for each training
sample and used to learn parameters for a normal
distribution independently for each cohort. p values for
the test errors are extracted from recurrent and
nonrecurrent distributions and combined to generate a
log odds ratio (LOR) for each gene-patient combination
(Fig 4C). These LOR values are then summed for all genes
included in the signature to generate a final LOR that a
tumor will recur or not. (For more details on how
genes are included in the final signatures, see
Supplemental Methods.)

Because our method considers protein as a function of
RNA, a gene that has differential RNA expression in the
absence of differential protein expression would not be
considered as a useful biomarker. We remedy this situa-
tion by generating a separate LOR that an RNA measure-
ment was taken from recurrent or nonrecurrent RNA
abundance distributions (Fig. 4D). The accuracy of the
LORs generated by the integrative or RNA-alone methods
are compared on the training set for each gene, and using a
simple objective function, the method decides whether to
use each gene as an integrative or RNA biomarker.

Using a synthetic dataset, we show that our method
is able to simultaneously use changes to protein
concentrations, RNA concentrations, and RNA-protein
correlations (Supplementary Figs. 3-5). Leave-one-out
cross-validation results on our patient cohort are shown
in Table 2. Our integrative method was able to correctly
predict 36 of 51 (71%) patients’ recurrence status,
including 20 of 26 (77%) nonrecurrent patients and 16 of
25 (64%) recurrent patients (Supplementary Fig. 6). This
is in contrast to results using protein and RNA expression
separately, which collectively had an accuracy of w50%.
Interestingly, the majority of prediction errors using our
integrative approach of nonrecurrent patients (4 of 6,
67%) came from the misclassification of patients who
received chemotherapy. This suggests that our method
was able to find tumors that may have recurred without
the intervention of adjuvant chemotherapy.

To find genes that best predict patient recurrence
status, we include feature selection by evaluating each
gene’s performance on the training cohort. The result is a
signature generated by each cross-validation test
(Supplementary Fig. 7). We evaluated the biological sig-
nificance of each gene included in amajority of signatures:
small ubiquitin-like modifier 1 (SUMO1), pterin-4
alpha-carbinolamine dehydratase 1 (PCBD1), proteasome
26S subunit ATPase 5 (PSMC5), archain 1 (ARCN1),
pyrophosphatase 2 (PPA2), and sorcin (SRI) (For a full list
of genes included in at least one signature, see
Supplementary Table 5). Each of these genes was used as
an integrative biomarker, not as an RNA biomarker.
Sumo1 is covalently attached to target proteins in a
process termed sumoylation. Sumoylation is involved in
many cellular responses; most notably, sumoylation of
DNA damage response proteins is necessary to repair
DNA double-stranded breaks.32 PCBD1 is a dimerization
cofactor of HNF1 homeobox A (HNF1A), which has been
implicated in numerous cancers.33,34 PSMC5 has
proteasomal functions, has been used as a biomarker of
radiosensitivity in a lung cancer H460 cell line, and has
been identified as a modifier of the transforming growth
factor beta transcriptional program.35,36 ARCN1 has been
hypothesized to function in vesicle trafficking, and in
one study, ARCN1 RNA expression was predictive of
survival in surgically resected lung cancer.37,38 PPA2 is a
mitochondrial inorganic pyrophosphatase. SRI has been
shown to be involved in multidrug resistance in cancer,
and protects against mitochondrial apoptosis.39-41 Our
integrative biomarker method selected biologically rele-
vant genes to predict lung adenocarcinoma recurrence.
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Discussion
In this study, we present a novel comprehensive

characterization of 51 lung adenocarcinoma tumors with
matched RNA and protein abundance analysis. We
further show that the combined analysis of RNA and
protein abundances can be used to define candidate
biomarkers of recurrence risk for surgically resected
lung adenocarcinomas. Although several papers have
used RNA data to inform the choice of protein
biomarkers, our method is the first, to our knowledge, to
integrate RNA and protein expression data into a single
signature. In fact, our method can be more broadly
implemented to perform supervised learning to predict a
binary response variable using any two matched
datasets.

There are several limitations of this study. First and
foremost, RNAseq data was generated from fresh frozen
tissues whereas proteomics data was generated from
FFPE tissues. This is a possible explanation for the
unusually low RNA-protein correlation. Second, although
our integrative biomarker improved upon RNA or
protein-based biomarkers for recurrence prediction in
our dataset, the accuracy (71%) is too low to be of
clinical utility. This result is possibly due to the high
intragroup variability observed in our data. Third, these
patients do not have matched DNA sequencing data, so a
comprehensive catalogue of driver mutations is lacking.
Fourth, the majority of recurrent tumors were male
(72%) and the majority of nonrecurrent tumors were
female (69%). Fifth, our study was not designed with
independent training and validation cohorts, so
independent validation is necessary to reduce the
potential for over-fitting explaining the observed results.
A large, publicly available cohort of lung cancer patients
with matched RNAseq, proteomics, and clinical data is
sorely lacking to aid in the validation of studies such as
the one presented here. Ideally, this validation set would
be produced solely from fresh frozen tissue obtained
from surgical resection and have sufficient numbers of
patients with and without tumor progression. Sixth,
protein extraction is difficult to perform and can produce
variable results, particularly on heterogenous tumors.42

Although our protein extraction methods for the
Vanderbilt/MD Anderson and WashU cohorts were
highly similar, they were not identical, and could be a
source of technical error in our study. Ultimately,
independent validation is necessary to show robustness
of our findings.

One interesting approach for a future study would be
to find combinations of RNA and proteins that are
predictive of a clinical or biological outcome that are not
necessarily from the same gene. It might be that the
expression of one protein as a function of an entirely
different RNA, which is possibly noncoding, could be an
excellent biomarker. This possibility highlights the fact
that our method contextualizes the protein expression
within the landscape of RNA expression.
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