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ABSTRACT: Recently, mass spectrometry (MS) has become
a viable method for elucidation of protein structure. Surface-
induced dissociation (SID), colliding multiply charged protein
complexes or other ions with a surface, has been paired with
native MS to provide useful structural information such as
connectivity and topology for many different protein
complexes. We recently showed that SID gives information
not only on connectivity and topology but also on relative
interface strengths. However, SID has not yet been coupled
with computational structure prediction methods that could
use the sparse information from SID to improve the prediction
of quaternary structures, i.e., how protein subunits interact
with each other to form complexes. Protein−protein docking,
a computational method to predict the quaternary structure of protein complexes, can be used in combination with subunit
structures from X-ray crystallography and NMR in situations where it is difficult to obtain an experimental structure of an entire
complex. While de novo structure prediction can be successful, many studies have shown that inclusion of experimental data can
greatly increase prediction accuracy. In this study, we show that the appearance energy (AE, defined as 10% fragmentation)
extracted from SID can be used in combination with Rosetta to successfully evaluate protein−protein docking poses. We
developed an improved model to predict measured SID AEs and incorporated this model into a scoring function that combines
the RosettaDock scoring function with a novel SID scoring term, which quantifies agreement between experiments and
structures generated from RosettaDock. As a proof of principle, we tested the effectiveness of these restraints on 57 systems
using ideal SID AE data (AE determined from crystal structures using the predictive model). When theoretical AEs were used,
the RMSD of the selected structure improved or stayed the same in 95% of cases. When experimental SID data were
incorporated on a different set of systems, the method predicted near-native structures (less than 2 Å root-mean-square
deviation, RMSD, from native) for 6/9 tested cases, while unrestrained RosettaDock (without SID data) only predicted 3/9
such cases. Score versus RMSD funnel profiles were also improved when SID data were included. Additionally, we developed a
confidence measure to evaluate predicted model quality in the absence of a crystal structure.

■ INTRODUCTION

Since the invention of electrospray ionization (ESI)1 and other
advances, mass spectrometry (MS) has been used to determine
the mass2,3 and oligomeric distribution4 of protein assemblies.
Among the benefits of MS are the ability to handle small
sample sizes (μLs of sample, at low μM concentrations or
lower), complex samples, samples that cannot crystallize, and
both small and large proteins (up to megadalton sized
assemblies). More recently, MS has been demonstrated as an
efficient analytical tool to yield three-dimensional structural
information on proteins and their molecular complexes.5,6

Several methods have been successfully coupled with MS to
elucidate structural information. Ion mobility mass spectrom-
etry (IM/MS)7−10 allows for the separation of protein
complexes based on size, charge, and shape. In IM/MS,
complexes are ionized and accelerated through a bath gas. The
time needed for the ions to pass through the bath gas is

dependent on their sizes/shapes as their movement is hindered
by collisions with the gas molecules. These time measurements
are then translated into rotationally averaged collisional cross
sections that provide insight into the shape of the complex.
Chemical cross-linking11−13 uses reagents, such as disuccini-
midyl sulfoxide (DSSO),14 to chemically link residues that are
located spatially near each other. Cross-linked protein
complexes are then enzymatically digested and analyzed with
MS, providing useful residue−residue distance restraints.
Covalent labeling15 methods chemically alter (i.e., change the
mass of) residues that are more solvent-exposed in solution
before the proteins are digested and analyzed with MS. Many
different techniques exist to alter the mass of solvent-exposed
residues. Covalent labeling methods can be largely separated
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into two groups, namely, specific and nonspecific labeling
methods. Nonspecific labeling methods can label most, if not
all, types of amino acid residues. Commonly used nonspecific
labeling methods are hydrogen−deuterium exchange
(HDX)16,17 and oxidative footprinting methods such as fast
photochemical oxidation of proteins (FPOP).18,19 In contrast,
specific labeling methods target particular amino acids, or types
of amino acids. Common methods can target arginine,
carboxylic acids, cysteine, histidine, lysine, tryptophan, and
tyrosine.15

Other MS-based methods gain insight into protein complex
structure by dissociating protein complexes by collision with a
gas or a surface, collision-induced dissociation (CID)20,21 and
surface induced dissociation (SID).22−25 In both activation
methods, protein complexes are multiply charged by a soft
ionization method (typically nanoelectrospray ionization) and
transferred into the gas phase, preserving quaternary
structure,26,27 and then accelerated toward a collision medium.
The difference in the two methods is the medium of the
collision. In CID, complexes collide with many inert gas atoms
or molecules, whereas in SID, complexes collide with a surface,
typically a self-assembled monolayer of fluorinated alkanethiol
on gold. For both methods, upon collision with the target,
noncovalent protein−protein interfaces in the complex can
break apart, rendering individual subunits or subcomplexes
(monomers, dimers, trimers, etc.). MS is then used to
determine relative intensities of each oligomer. In CID, the
observed dissociation pathway frequently results in the ejection
of highly charged monomers (indicative of subunit unfold-
ing),28 while SID usually provides a profile of connectivity
based on ejection of specific nativelike subcomplexes.29

Although unfolding is frequently observed in CID, it is
possible in some cases to influence this process such that
unfolding is alleviated so that structural inter-subunit
connectivity can be determined.30 Conversely, SID typically
gives extensive information on structural connectivity, from
which data have been favorably compared to known crystal
structures on many systems.22,24,31−34 Typically, SID has been
used to elucidate complex stoichiometry and connectivity.
However, we recently demonstrated a strong correlation
between appearance energy (AE) and structural features of
dissociated interfaces using SID.35 While SID, along with other
bioanalytical MS and dissociation techniques, yields useful
structural information, the data are still sparse, not allowing for
an unambiguous determination of the protein complex
structure. In fact, the data extracted from SID measurements
for use in this study contained only a single data point for each
interface, the AE. For this reason, there remains a critical need
for computational methods that can facilitate structural
interpretation of SID data.
Numerous experimental techniques (outside of MS) that

also yield sparse data have been successfully combined with
computational methods to facilitate structure determination of
individual proteins. Sparse data from nuclear magnetic
resonance (NMR), namely, chemical shifts, orientational
restraints from residual dipolar couplings (RDC), and distance
restraints from the nuclear Overhauser effect (NOE), have
been coupled with Rosetta (CS-Rosetta)36−39 to successfully
predict protein folds. Similarly, TOUCHSTONEX uses sparse
long-range contacts derived from NOE to fold proteins.40 Site-
directed spin labeling electron paramagnetic resonance (SDSL-
EPR) data can also be used in Rosetta (RosettaEPR)41,42 and
BCL:MP-Fold43 to improve high-resolution structure predic-

tion through protein folding and homomer structure
generation.44 Additionally, small angle X-ray scattering
(SAXS) profiles can be used to refine (FoXS) and predict
(MultiFoXS) protein folding as well as to predict complex
structures through rigid protein−protein docking (FoXS-
Dock).45 SAXS can also be used with course grained molecular
dynamics (MD) for structure prediction.46 Finally, cryoelec-
tron microscopy (cryoEM) density maps (medium and high
resolution) can be used in EM-Fold,47−49 Rosetta,50−52

molecular dynamics (MD),53−58 and Pathwalking.59

For the computational structure prediction of protein
complexes, protein−protein docking is often used. Protein−
protein docking methods, such as DOT,60 HADDOCK,61

ZDOCK,62 ClusPro,63−65 and PatchDock/SymmDock,66 take
all-atom subunit structures as inputs and predict the relative
orientation of the subunits in the complex. Rosetta’s protein−
protein docking algorithm, RosettaDock,67 uses Monte Carlo
sampling techniques with Rosetta’s scoring function.68

RosettaDock has two main docking phases, low-resolution
centroid followed by high-resolution all-atom. In the low-
resolution phase, residues are represented as single spheres
(centroid mode) while, in the high-resolution phase, all atoms
are explicitly represented (all-atom mode). Improvements
made in RosettaDock include more efficient and accurate side-
chain rotamer optimization,69 inclusion of backbone flexi-
bility,70,71 allowing for differences in pH,72 and modeling of
water-mediated interfaces.73 Although RosettaDock has been
very successful, improvements are always beneficial.
In the field of MS, chemical cross-linking74 and covalent

labeling methods75 have been used in Rosetta to provide useful
distance and exposure restraints for de novo modeling and
protein−protein docking to improve prediction. Outside of
Rosetta, the Integrative Modeling Platform76−78 has had
tremendous success at predicting several protein complex
structures using multiple types of MS data such as ion
mobility,10,79 chemical cross-linking,80−86 and covalent label-
ing.87 Other platforms can also use cross-linking data to model
structures (Xlink DB 2.0,88 Xlink Analyzer,89 XL-MOD,90

DynaXL,91 and HADDOCK92). Recently, HDX has also been
used in combination with protein−protein docking using
DOT.93 However, SID data have not yet been used to facilitate
structure prediction. Recently, a correlation between SID
appearance energy and protein−protein interface properties
along with intra-subunit rigidity has been demonstrated;35

however, a link to structure prediction is missing.
In this work, we developed an improved model to use

structural features of protein−protein interfaces to predict SID
AE specifically for use in protein−protein complex structure
prediction. Next, we developed a Bayesian scoring function
that combines Rosetta’s protein−protein docking scoring
function with an SID scoring term that assesses agreement of
protein complex structures with experimental SID AE,
penalizing structures with high disagreement from experiment.
Finally, we showed that using this scoring function to rescore
poses generated from RosettaDock improved the selection of
nativelike models. The SID_rescore application is freely
available and easily accessible through Rosetta. We developed
confidence measures that distinguish successful predictions
from unsuccessful ones. In a benchmark of nine protein
complexes, our method predicted 6/9 structures with root-
mean-square deviation (RMSD) less than 2 Å from the native
(as compared to 3/9 with Rosetta only).
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■ RESULTS AND DISCUSSION

Improved Model More Stable Using Hydrophobic
Surface Area. In previous work,35 we developed a model to
predict SID AE of any protein−protein interface (PPI) based
on structural features of the specific PPI. While SID AE is a
gas-phase measurement rather than a solution-phase restraint,
our previous study highlighted that this measurement can be
correlated with solution-phase structural properties. The
previously reported model used a linear combination of the
number of interacting residues at the interface (NR), number
of unsatisfied hydrogen bonds at the interface (UHB), and
intra-subunit rigidity (RF, see below). Although this model
showed a strong correlation between calculated and exper-
imental AE, it was not ideally suited for protein complex
structure prediction. We found that poses with low interface
RMSDs can have drastically different UHB and thus AEpred,
rendering UHB problematic for use in protein−protein
docking where it is necessary to consistently assign favorable
scores to near-nativelike structures. For this reason, a slightly
modified model, consisting of NR, RF, and hydrophobic
surface area (HSA) of the interface (eq 1), was more successful
for structure prediction. The substitution of HSA (replacing
UHB) allowed for stable use of the model in protein−protein
docking. We hypothesized that this model could be used for
structure prediction of protein complexes from SID data.
Because the model can predict AE based on the structure, it
could be used to evaluate an ensemble of predicted structures
in situations where the AE is known from SID experiments. To
do this, we developed an SID scoring term to be used in
combination with the RosettaDock scoring function for the
evaluation of poses from protein−protein docking.
Use of the Predictive Model and Rosetta SID Scoring

Function Can Improve Model Selection with Ideal Data
(AE Predicted from Crystal Structures). To explore
whether the predictive model containing HSA, NR, and RF
theoretically provides sufficient information to successfully
discriminate between protein complex models generated by
protein−protein docking, we first tested the scoring function
on a large number of docking cases using ideal data: rather
than using SID AE from experimental data, the crystal
structures of 57 proteins (list of complexes shown in Table
S1) were used to generate theoretical appearance energies
(using the predictive model) for the interface between two
subunits. We investigated complexes consisting of dimers
(homo and hetero), tetramers, and pentamers of 100−450
residues per chain in size. In each case, the calculated AE was
treated identically to the experimental AE for rescoring
experiments. For each complex, 10 000 potential structures
(poses) were generated using RosettaDock. A randomization
flag ensured that the docking sampled many different
orientations of protein−protein interfaces. All poses were
rescored using the developed Rosetta SID scoring function.
The rescoring results were evaluated on the basis of the best
RMSD in the top three scoring models, as shown in Figure 1.
Out of the 57 complexes tested, the RMSD of the selected
structure either improved or stayed the same for 54 cases when
the ideal SID AE data (predicted from crystal structures) were
incorporated. An undesirable increase in RMSD of more than
1.5 Å was observed for only one case. For 14 complexes, the
RMSD improved (decreased), and for 10 complexes, the
RMSD improved (decreased) by more than 10 Å when
predicted AE data were used for the rescore. Figure S1 shows

predicted structures for five cases where including the ideal AE
data significantly improved model selection (3VM9, 3GMX,
3JCF, 4IX2, and 4HY3). The funneling of these score versus
RMSD distributions also improved significantly, as will be
described later. These results may not be fully representative of
a realistic application of experimental SID AEs since the data
used for these complexes were essentially assuming a perfect
predictive model. However, as a proof of principle, they do
show that knowing the information contained in the model
(HSA, NR, and RF) has strong potential to successfully assist
with the discrimination between good and poor protein−
protein docking poses.

Bayesian SID Scoring Function Improves Protein−
Protein Docking Model Selection. Nine protein complexes,
which were all substructures (frequently dimers contained
within the full complexes) of the protein complexes in the SID
data set (as described in the SI), were used to assess whether
SID data can be used to improve protein complex structure
prediction. It is important to note that all SID experiments
were performed under “charge-reducing” conditions, which are
thought to keep the complex more compact and native-
like.94−96 In addition, to avoid collapse or unfolding, the
instrument was tuned to limit activation in regions where
activation is not intended, i.e., in regions other than the SID
device. We have previously reported differences in SID AE if
the structure has been preactivated (e.g., by in-source CID97).
In addition, we would anticipate differences between
experimental and theoretical measurements if disruptive
organic solutions were added to the sample, so those were
avoided. Although it is not expected that gas-phase measure-
ments are providing direct information on solution-phase
structures, it is likely that the complexes are kinetically trapped
with interfaces intact. SID in the gas phase can then disrupt the
kinetically trapped structure with its structurally informative
interfaces in such a way that the AE data can be used to predict

Figure 1. Comparison of rescoring results for docking cases using
ideal SID AE data. For each of the 57 complexes, 10 000 poses were
generated using RosettaDock and rescored using the Rosetta/SID
scoring function. The best RMSD in the top 3 scoring models is
shown with and without the incorporation of SID data. The selected
structure improved or stayed the same for 54 cases, and in only one
case, an undesirable increase of more than 1.5 Å was observed.
Additionally, 10 cases improved by more than 10 Å.
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which computationally docked structure is the best fit to the
solution structure.
For each subcomplex, 10 000 poses were generated using

unrestrained RosettaDock, using an initial randomization flag.
Subsequently, all RosettaDock poses were additionally

rescored using the developed Bayesian SID scoring function
to compare its ability to identify nativelike poses to that of the
Rosetta protein−protein docking scoring function. On the
basis of this analysis, the AE prediction model (eq 1) was
ultimately tested on 90 000 poses. Figure S2 shows the SID

Figure 2. Comparison of Rosetta and Rosetta with SID. For each subcomplex, 10 000 structures were generated using unrestrained RosettaDock
and rescored using the developed Bayesian SID docking score (which is a linear combination of the RosettaDock score and a developed SID score).
For each of the nine subcomplexes, the lowest RMSD among the top three scoring structures is shown. Rosetta with SID showed an improved
ability over the RosettaDock score to identify nativelike structures within the top three scoring models. In 6/9 cases, the pose with the best RMSD
of the top three scoring poses from Rosetta with SID was within 2 Å from the native while only 3/9 cases using RosettaDock gave sub-2 Å RMSD
models.

Figure 3. Docked complexes of the subcomplexes for which including SID restraints improved RMSD by more than 18 Å. Green structures are the
natives, blue the models predicted without SID data, and red the models predicted with the Bayesian Rosetta SID rescore. For each dimer, the
stationary subunit (left) was aligned to show the discrepancy or lack thereof for the mobile (docked) subunit (right).
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score versus RMSD plots for 1GZX, 1SWB, 1SAC, and
1GZX_dimers. In general, the SID scoring term scored low-
RMSD structures well while penalizing most high-RMSD
structures. This term (based on agreement with SID AE) was
not able to unambiguously select nativelike structures alone
but, when combined with the RosettaDock scoring function,
showed significant improvement in model selection. Figure 2
shows the results from the docking and rescoring with the
Rosetta/SID combined scoring function. In 6/9 cases, the best
RMSD of the top three scoring models was less than 2 Å with
respect to the native structure using the Bayesian SID score
(1FGB, 0.43 Å; 1GNH, 1.5 Å; 1GZX, 0.31 Å; 1SAC, 1.25 Å;
1SWB, 0.23 Å; 1SWB_dimers, 0.41 Å). For Rosetta alone, only
3/9 cases resulted in structures with less than 2 Å RMSD
(1FGB, 0.44 Å; 1SWB, 0.23 Å; 1SWB_dimers, 0.41 Å). In
three cases where Rosetta predicted poorly (1GNH, 1SAC,
1GZX), SID was able to drastically improve selection,
decreasing the RMSD by >18 Å for each structure shown in
Figure 3 (18.6, 23.5, and 23.5 Å, respectively). Additionally,
the average RMSD of the top 100 scoring structures was lower
(or equal) for the Rosetta/SID scoring function than for the
Rosetta score alone for 8/9 cases (Table S2).
Confidence Measure Allows Identification of Systems

with Nativelike Models. While the Bayesian SID scoring
function correctly identified a near-native structure among the
top scoring models for 6 out of 9 benchmark proteins, it did
not achieve this for 3 of the proteins. We thus investigated
whether it was possible to identify a confidence measure that
selectively flags successful benchmark cases in the absence of a
crystal structure. To assess the confidence in the results from
protein to protein, we examined the average score per residue
of the top 1000 scoring structures from each of the complexes
that were docked. Structures with low score per residue can be
considered lower energy and more nativelike; thus, confidence
in these structures is higher. Figure 4A shows RMSD
(corresponding best RMSD of the top 3 scoring models
from Figure 2) versus average score per residue of the top 1000
models when SID was used to rescore. Proteins with lower
score per residue correspond to higher confidence in the
structures built, as they can be considered more nativelike.
This confidence measure naturally separates the proteins into
two groups, high confidence [systems with average score per
residue lower than −0.6 REU (Rosetta Energy Unit, dotted

line)] and low confidence (systems with average score per
residue higher than −0.6 REU). According to this measure, 5/
6 of the high-confidence proteins had low RMSDs (less than 2
Å) while 2/3 of the high-RMSD models were flagged as low-
confidence proteins. Despite the high RMSD, the high-
confidence outlier (1GZX_dimers) did improve dramatically,
increasing Pnear 42-fold and improving the ranking of the
lowest-RMSD pose (from 1286 to 51). Thus, the investigated
confidence measure allowed for successful identification of
low-RMSD models when it was used to examine the structures
predicted with Rosetta and SID.

SID Data Most Useful in Predicting Smaller Com-
plexes. With any form of protein structure prediction,
accuracy typically scales inversely with size, where smaller
proteins are generally predicted more accurately.98 To
investigate the influence of size on prediction accuracy in
our benchmark, we measured the size of the complex in terms
of the total number of residues of the subunits involved in the
interface. When SID was used to rescore structures, much like
with the previously mentioned confidence measure, size
strongly correlated with accuracy. Figure 4B shows that all
complexes with fewer than 475 residues were correctly
predicted (RMSD < 2 Å), while all larger complexes performed
poorly. SID strongly improved the prediction accuracy over
RosettaDock alone, which failed to accurately predict the
structure of three of the complexes with fewer than 475
residues.

Improvement in “Goodness of Funneling”. Not only
did SID improve model selection, but it also improved the
“goodness of funneling” in the score versus RMSD plots. This
is generally achieved when low-RMSD (i.e., more nativelike)
structures tend to score better on average than high-RMSD
structures resulting in a funnel-like shape in the score versus
RMSD plot. To quantify this, we used the metric Pnear,

99 which
ranges from zero (poor funneling) to one (good funneling).
The calculated Pnear values can be found in Table S3. In three
of the nine tested cases (1GZX, 1SAC, and 1GZX_dimers),
there was a greater than 3-fold increase in funneling between
the Rosetta scored models and the Rosetta/SID scored models
(42.2, 3.68, and 42.4, respectively). Figure 5 shows the score
versus RMSD plots for these cases. For two out of the three
protein complexes that showed large increases in Pnear, SID also
dramatically improved RMSD (from 23.9 to 0.31 Å for 1GZX,

Figure 4. (A) Best RMSD of the top three scoring poses when SID data were included, shown against the confidence measure of average residue
score for the top 1000 scoring poses. High-confidence (to the left of the dotted line) structures performed well with SID, while all poor structures
are considered low-confidence (to the right of the dotted line). (B) Prediction results dependence on protein size. SID helped to correctly predict
(within 2 Å RMSD of native) all complexes smaller than 475 residues, while RosettaDock failed to correctly predict half of the complexes smaller
than 475 residues without SID data.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.8b00912
ACS Cent. Sci. 2019, 5, 1330−1341

1334

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00912/suppl_file/oc8b00912_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00912/suppl_file/oc8b00912_si_001.pdf
http://dx.doi.org/10.1021/acscentsci.8b00912


and from 24.7 to 1.25 Å for 1SAC). Even though Rosetta/SID
did not predict a structure with RMSD lower than 2 Å for
1GZX_dimers, the increase in Pnear (as compared to Rosetta
alone) is an indication of significant improvement over Rosetta
alone. For this protein, the top generated pose (RMSD = 0.94
Å) ranked 1286/10 000 in score using Rosetta but improved to
51/10 000 using Rosetta with SID data. Additionally, the Pnear
also improved for 56/57 ideal cases (except 4IWH) when SID
data were used, as shown in Figure S3A.
Another way to assess funneling is to examine the scores of

the high-RMSD structures. If the scores of high-RMSD
structures are increased, then a score versus RMSD profile
can be considered more “funnel-like.”More specifically, if high-
RMSD structures are separated by a larger score difference (on
average) from the lowest score, then funneling is increased.
Using this criterion, rescoring with SID again showed

improvement. Figure 6 shows the difference between the
average score of all high-RMSD structures (RMSD > 10 Å)
and the lowest score with the RosettaDock score and Rosetta/
SID rescore. For each complex, there was a larger separation in
score from the minimum for the high-RMSD structures when
SID data were included. This indicates that the developed SID
scoring term successfully penalized (i.e., increased the score of)
high-RMSD structures as compared to the RosettaDock total
score. For the ideal docking data, this metric improved for all
57 cases when SID data were incorporated, as shown in Figure
S3B.

Lack of Sampling Can Help Explain Suboptimal
Prediction Results for Three Complexes. Although SID
data helped to successfully identify low-RMSD structures (<2
Å RMSD) for 6/9 complexes, for three complexes
(1GZX_dimers, 3MVO, and 8TIM), this was not the case.

Figure 5. Score vs RMSD plots of each complex for which Pnear (quantification of “goodness of funneling”) increased by greater than 3-fold
(absolute values in Table S3) when SID data were used. 1GZX, 42.2-fold increase; 1SAC, 3.68-fold increase; 1GZX_dimers, 42.4-fold increase.
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These three complexes were all relatively large (Figure 4B),
and our confidence measure (average score of the top 1000
scoring models) was also relatively poor (Figure 4A). For
1GZX_dimers, there was a significant improvement in
funneling when SID was used (42-fold improvement in
Pnear). Considering Figure 5 for the score versus RMSD plot,
the scoring ranking of the lowest-RMSD structure improved
(from 1286/10 000 to 51/10 000). Thus, despite the fact that
the predicted structure did not improve for this protein, SID
did show improvement in the overall scoring of candidate
structures. For both 3MVO and 8TIM, we suspect that the
poor predictions may be largely due to poor sampling, which is
often exacerbated for large complexes due to the large
conformational search space. Interestingly, these two were
the only complexes for which no structure with less than 4 Å
RMSD was observed from the docking. Specifically for the
3MVO case, the poor sampling is likely due to the intertwining
nature of the monomers at the interface, which might
necessitate unfolding followed by restructuring to bind in
nature. Since the sampling of structures was independent of the
SID scoring term, it is difficult to assess whether the
shortcoming of the prediction was due to the inclusion of
SID data. In addition to the poor docking prediction for these
two structures, they also both had considerably worse Pnear
values when SID was used (score versus RMSD plots are
shown in Figure S4). However, the absolute Pnear values from
RosettaDock alone were also extremely low (1.77 × 10−14 and
1.06 × 10−4, respectively), so the decreases may not be as
meaningful in these cases. On the contrary, the funneling
metric used in Figure 6, the average separation between high-
RMSD poses (>10 Å) and the minimum scoring pose, showed
improvement for both 8TIM (from 22.0 to 25.2 REU) and
3MVO (from 56.3 to 365.6 REU), indicating that high-RMSD
poses were generally penalized more than low-RMSD poses.
Despite the fact that Rosetta with SID did not predict
nativelike structures in all cases, addition of the SID-dependent
term was never detrimental.

■ CONCLUSION
We used a benchmark set of seven protein complexes for
which SID data as well as crystal structures were available to
develop a Bayesian scoring function that combined the
RosettaDock scoring function with a novel SID scoring term

that used the predictive model to quantitatively assess
agreement with experiment for any generated structure. The
aforementioned Bayesian scoring function was used to rescore
poses generated from unrestrained RosettaDock. As a proof of
principle, we first tested the potential effectiveness of this
scoring function on 57 cases where the data were ideal (NR,
HSA, and RF extracted from the subcomplex crystal structures
to predict AE). Next, we tested the scoring function on 9 cases
with real experimental data. In 6/9 subcomplexes tested, when
SID data were incorporated, we predicted structures with less
than 2 Å RMSD from the native while, without the SID
restraints, we predicted those for just 3/9. SID helped correctly
predict structures within 2 Å RMSD from native for 5/6 high-
confidence complexes and all complexes with fewer than 475
residues. SID data also significantly improved “goodness of
funneling” in some cases. From these results, we conclude that
SID does provide useful structural restraints that can be
employed in protein quaternary structure prediction. We
hypothesize that SID helps RosettaDock identify nativelike
structures based on interface size and hydrophobicity since
interfaces are scored based on number of interface residues and
buried hydrophobic surface area at the interface, while also
using Rosetta’s successful scoring function, providing a more
detailed assessment of the binding. A newly developed
SID_rescore application is freely available and easily accessible
through Rosetta. We further showed that, although SID AE
data are not collected in the solution-phase, and protein−
protein interactions can change in the gas phase (for example,
strengthening of electrostatics), factors such as kinetic
trapping, leading to retention of the protein−protein interfaces,
do allow AE data to provide useful restraints for solution-phase
structure prediction. We have added a tutorial, including a
summary of necessary files and command lines, to the
Supporting Information. Future work will focus on improving
the method to work on larger complexes and to explore
whether different protein structural motifs require different AE
prediction equations. Specifically, we hope to combine SID AE
with cryoEM density maps and/or other MS measurements
such as ion mobility collisional cross sections, covalent cross-
linking, covalent labeling, etc. Including more restraints could
help improve the predictive power of SID.

Figure 6. Separation of the average score high-RMSD models (RMSD > 10 Å) from the minimum score for each docked subcomplex with and
without SID data. For each complex, high-RMSD structures are penalized more when SID data were included.
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■ METHODS

Predicting Appearance Energy. Prediction of appear-
ance energy (AE), the lowest experimental energy required to
cleave the separating interface of the complex and measure it
on the mass spectrometer, was described in a recent paper.35

Here, we pursued a similar strategy to improve the AE
prediction for use in computational structure prediction.
Rosetta’s InterfaceAnalyzer100 was used to calculate the
following structural features of the native crystal structure
complexes of the identified dissociating interfaces: change in
Rosetta energy when subunits interact, change in Rosetta
energy when subunits interact per area of interface, Rosetta
energy of interface residues, Rosetta energy per residue for the
interface, hydrophilic/hydrophobic/polar/total surface area of
interface, salt bridges at interface, hydrogen bonds at interface,
unsatisfied hydrogen bonds at interface, hydrogen bond
Rosetta energy at interface, and number of interface residues.
All these quantities were subsequently normalized by the
number of inter-subunit protein−protein contacts. While some
of the calculated interface features individually showed a
correlation to AE (number of interface residues, R2 = 0.38;
interface surface area, R2 = 0.35; Rosetta interface ΔG, R2 =
0.22), a model that combined several interfacial features
allowed us to most accurately predict AE for any given
structure based on the PPI properties. We also developed a
term to account for subunit flexibility. This term, called the
rigidity factor (RF), quantifies intra-subunit stability and is
bounded between zero and one, where one denotes the most
rigid, and zero denotes the most flexible. The RF is calculated
on the basis of the density (normalization per residue) of intra-
subunit hydrogen bonds, salt bridges, and disulfide bonds (full
description in ref 35). For structure prediction, the best model,
after iteratively searching through combinations of the
calculated parameters and RF, includes number of residues
at the interface (NR), hydrophobic surface area of the interface
(HSA), and RF (shown in eq 1). To optimize the weights, we
used python’s simplex algorithm101 to minimize χ2 between
predicted and experimental AE for the SID data set (as
described in the SI).

= + −

= × + × − ×

w w wAE NR HSA RF

5.15 NR 0.12 HSA 208.74 RF

pred NR HSA RF

(1)

Bayesian Scoring Function. To use the experimental data
to derive a scoring function for protein structure prediction,
the posterior probability, p(x|D), i.e., the probability of
observing a particular structure given the data, was evaluated.
To assess the posterior probability, Bayes’ theorem in eq 2 was
used.

| =
|

∝ |p x D
p D x p x

p D
p D x p x( )

( ) ( )
( )

( ) ( )
(2)

Note that the probability of observing the data (p(D),
denominator) was disregarded because we considered the
probabilities of many structures given the same data; thus,
p(D) was a constant scaling factor. Therefore, to determine the
posterior probability, we needed to define two terms: the
likelihood (p(D|x)), representing the probability of measuring
the data given the structure, and the prior (p(x)), representing
the probability of observing the structure without considering

the data. RosettaDock was used to sample the prior
distribution, and thus, the prior probability is shown in eq 3.

β∝ [− ]p x E x( ) exp ( )Rosetta (3)

The scoring function was defined as the negative logarithm of
the posterior probability, shown in eq 4. For this scoring
function, low scores corresponded to high probability, and high
scores corresponded to low probability. Note that the
systematic use of Bayes’ theorem allowed us to separate the
contribution of previous knowledge (prior) and the data
(likelihood), resulting in the linear combination of the two
terms. In the equation, the prior score (−ln[p(x)]) is
proportional to the energy of the complex, for which the
RosettaDock total score was used.

β

= − [ | ] = − [ | ] − [ ]

= − [ | ] +

p x D p D x p x

p D x E

score ln ( ) ln ( ) ln ( )

ln ( ) Rosetta (4)

To determine the score of the likelihood (−ln[p(D|x)]), we
used the previously mentioned AE prediction model. For a
given structure to be scored, the interface AE was first
calculated using eq 1. Next, on the basis of the absolute
deviation from the experimental AE (Δ), a fade function was
used to determine the score of the likelihood, as shown in
Figure S5. The function contained two cutoffs, a lower cutoff
(Elow = 100 eV) below which structures were given a score of
zero and a higher cutoff (Ehigh = 1750 eV) above which
structures were given the maximum score. We hypothesize that
the inclusion of the low cutoff (Elow) helped account for
experimental uncertainty as it allowed us to treat structures
that come within 100 eV of the experimental AE equally.
According to this scoring term, structures with small deviation
from experiment would have a low score, thus a high
probability, and structures with high deviation from experi-
ment would have a high score, thus low probability. A third
parameter was introduced as a weight of this term. The final
form of the Bayesian scoring function is shown in eq 5. The
weights and cutoffs were optimized as part of the benchmark
and thus approximate the true likelihood probability.

= + = × +w E Escore SID 6 SIDSID score Rosetta score Rosetta
(5)

Protein−Protein Docking. To generate a large set of
potential protein complex structures, RosettaDock was used.
Relaxed complex crystal structures were chosen as starting
structures. To avoid biasing the results and to properly perturb
the subunits away from the native structure for testing
purposes, the −randomize2 flag was used, which randomizes
the position and orientation of the subunit to be docked.
To first test the viability of the scoring function to rank

poses, 57 different complex structures were chosen from the
protein databank (list of complexes shown in Table S1)
containing 34 dimers (30 homo, 4 hetero), 18 homopen-
tamers, and 5 homotetramers. For each of the 57 complexes,
we docked one subunit to an adjacent subunit and generated
10 000 poses. Next, as a proof of principle, the crystal
structures were used to calculate a theoretical appearance
energy for those interfaces. This AE was used as a substitute for
the experimental AE as an ideal case. Using these ideal SID AE
data, the structures were rescored using the Rosetta SID
scoring function.
For each protein in the SID data set (described in the SI),

we first docked one subunit to the adjacent subunit separated
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by the interface identified by SID. In addition to these seven
dockings, for the two tetramers, we also docked dimers
together to form the tetramers since those interfaces were also
known. The specific chains docked were as follows (according
to chain ID’s in the PDB): 1FGB, D_E; 1SAC, A_B; 1GNH,
A_B; 1GZX, A_B; 1SWB, A_B; 8TIM, A_B; 3MVO, A_B;
1GZX_dimers, AB_CD; and 1SWB_dimers, AB_CD. The
−partners flag was used, meaning that the position of the
second chain was perturbed with respect to the stationary first
chain. For each of these dockings, 10 000 structures were
generated using unrestrained RosettaDock (talaris2014 scoring
function). The structures were scored and ranked using the
Rosetta protein−protein docking total score as well as the
Bayesian scoring function with SID. An application (SID_re-
score) was created in Rosetta to rescore poses generated from
RosettaDock (see tutorial in the SI).
Safety Statement. No unexpected or unusually high safety

hazards were encountered.
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Jeschke, G.; Meiler, J. Pushing the size limit of de novo structure
ensemble prediction guided by sparse SDSL-EPR restraints to 200
residues: The monomeric and homodimeric forms of BAX. J. Struct.
Biol. 2016, 195, 62−71.
(43) Fischer, A. W.; Alexander, N. S.; Woetzel, N.; Karakas, M.;
Weiner, B. E.; Meiler, J. BCL::MP-fold: Membrane protein structure

prediction guided by EPR restraints. Proteins: Struct., Funct., Genet.
2015, 83, 1947−1962.
(44) Das, R.; Andre,́ I.; Shen, Y.; Wu, Y.; Lemak, A.; Bansal, S.;
Arrowsmith, C. H.; Szyperski, T.; Baker, D. Simultaneous prediction
of protein folding and docking at high resolution. Proc. Natl. Acad. Sci.
U. S. A. 2009, 106, 18978−18983.
(45) Schneidman-Duhovny, D.; Hammel, M.; Tainer, J. A.; Sali, A.
FoXS, FoXSDock and MultiFoXS: Single-state and multi state
structural modeling of proteins and their complexes based on SAXS
profiles. Nucleic Acids Res. 2016, 10, W424−W429.
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