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Protein shape sampled by ion mobility mass
spectrometry consistently improves protein
structure prediction

SM Bargeen Alam Turzo1, Justin T. Seffernick1, Amber D. Rolland 2,
Micah T. Donor2, Sten Heinze1, James S. Prell2, Vicki H. Wysocki 1 &
Steffen Lindert 1

Ion mobility (IM) mass spectrometry provides structural information about
protein shape and size in the form of an orientationally-averaged collision
cross-section (CCSIM). While IM data have been used with various computa-
tional methods, they have not yet been utilized to predict monomeric protein
structure from sequence. Here, we show that IMdata can significantly improve
protein structure determination using the modelling suite Rosetta. We
develop the Rosetta Projection Approximation using Rough Circular Shapes
(PARCS) algorithm that allows for fast and accurate prediction of CCSIM from
structure. Following successful testing of the PARCS algorithm, we use an
integrative modelling approach to utilize IM data for protein structure pre-
diction. Additionally, we propose a confidence metric that identifies near
native models in the absence of a known structure. The results of this study
demonstrate the ability of IM data to consistently improve protein structure
prediction.

Proteins are at the core of virtually all cellular processes. Therefore,
comprehensive knowledge of protein structures with atomistic detail
can be beneficial for several pharmaceutical applications such as vac-
cine design1, drug discovery2,3, enzyme design4, self-assembling mole-
cular machines5, and many more6. Mass spectrometry (MS) has
become a prominent technique in the field of structural biology due to
its ability to provide structural information for proteins and protein
complexes. MS can be particularly beneficial because it is faster, can
work for heterogeneous samples, can be used routinely at all stages of
a project, and has fewer sample preparation complications compared
to high-resolution techniques such as X-ray crystallography and cryo-
electron microscopy (cryo-EM), and fewer concentration and size
limitations compared to nuclear magnetic resonance (NMR) spectro-
scopy. Several findings for protein structures in the gas phase also
suggest that features such as elements of secondary structure, com-
pactness, and quaternary structure can be preserved during the tran-
sition from solution to desolvated state7–9. For these reasons, structural

MS can be very beneficial particularly when high-resolution methods
are not feasible10,11. Variousmethods have beendeveloped and coupled
to MS to study protein structures12,13 including in-solution approaches
such as chemical crosslinking14, covalent labeling15 and hydrogen-
deuterium exchange16, and gas-phase approaches such as collision-
induced dissociation, electron capture/transfer dissociation, ultravio-
let photodissociation, surface-induced dissociation17 and ion mobility
(IM) spectrometry18. While such MS techniques may provide diverse
details and routine analysis of structures, experimental data collected
from experiments are sparse and cannot unambiguously determine
atomic-resolution structure19.

An alternative approach to experimental structure determination
is to use computational modellingmethods. These approaches, such as
structure prediction from sequence or protein-protein docking, can
also provide insight into atomistic details of biomolecules but are fre-
quently limited in accuracy due to the large conformational sampling
space among other challenges20. While these methods can be
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successfully utilized in the absence of experimental data, sparse
experimental data are often used to guide and improvemodelling19,21,22.
Experimental data from various MS techniques have recently proved
pivotal within integrative structural biology frameworks14,16,23–40.

In IM, ions are transferred into an inert gas chamber at a constant
pressure and temperature under the influence of a weak electric
field41,42. This technique is regularly utilized to separate protein
structures based on their shape and size. IM can also provide a
rotationally averaged collision cross section (CCSIM) of the protein
which is related to the amount of momentum exchanged between
ion and buffer gas over the course of the collisions and can be
thought of as somewhat like rotationally averaged cross sectional
area43. Several methods have been developed to predict CCS from
protein structure. Among these, the most physically realistic algo-
rithms are the trajectory method (TJM)44,45 and diffuse trajectory
method (DTM)46 which integrate Newton’s equation of motion to
calculate the classical scattering of gas particles. Both TJM and DTM
explicitly account for long-range interactions through Lennard-Jones
potentials to approximate momentum transfer from each gas parti-
cle to the collided ion. CCS obtained from these methods is very
accurate45, but these calculations can be slow. Due to the high com-
putational cost, prediction methods such as elastic hard sphere
scattering47, projection superposition approximation (PSA)48, local
collision probability approximation49, and projection approximation
(PA)43 make further approximations on TJM, resulting in faster CCS
calculations. Among these approximatedmethods, PA is the simplest
and fastest, because it neglects the scattering and long-range
interactions43,50. CCSPA only accounts for the collisions of a gas par-
ticle with the ion based onhard sphere atomic radii by calculating the
average cross-sectional area of the protein structure as experienced
by the buffer gas. Using the CCS projection approximation calcula-
tion tool IMPACT, calculations are about 106 times faster43 than the
most rigorous methods and are widely used for comparison with
experimental IM data. Therefore, PA approaches are advantageous
for use in integrative modelling, where the CCS calculation is
required for thousands of structures that are obtained from Monte
Carlo sampling.

Several instances of structural modelling in conjunction with IM
data have been reported. IM spectra have been successfully predicted
with the structure relaxation approximation (SRA) method9. This
method uses molecular dynamics simulations to model structures in
the specific charge states. It then utilizes CCSPSA of the generated
structures to predict an overall IM spectrum. The SRA method indi-
cated that systems studied with IM methods are generally consistent
with retention of many residue-residue contacts determined by X-ray
crystallography. Several studies suggest that during native IM experi-
ments, globular proteins undergo minimal compaction and structural
rearrangement upon transfer to the gas phase using nanoelectrospray
ionization, assuming they are appropriately charged (with lower
charge states often exhibiting patterns consistent with solution
structures) and that instrument conditions are kept “soft” to avoid
unintentional activation51–53. Thus, the proteins largely retain native-
like secondary, tertiary, and quaternary structures during the time-
scale of native IM experiments9,40,54,55. Therefore, data from such gas
phase studies likely is beneficial for modelling solution phase struc-
tures though a rapid, validated way to evaluate plausible candidate
structures consistent with IM-MS data would be beneficial to inter-
preting these results. Furthermore, IM data have been incorporated in
computational modelling for protein complex structure prediction. In
thesemethods, coarse-grainedmodels generated using the Integrative
Modelling Platform56 were ranked and clustered based on the agree-
ment between predicted and experimental CCSmeasured from IM28,35.
CCSIM values for complexes and their individual subunits have also
been successfully used to approximate rough intersubunit distance
used as restraints in modelling methods to identify coarse-grained

topologies of complexes36–39. Studies have also revealed that shapes
and architectures of protein complexes canbedetermined fromCCSIM
measurements and database searches57,58. In addition to complex
structure prediction, work has also been done to show correlation
between IM data and structural similarity (RMSD)9. While several stu-
dies havedemonstrated that IMdata canbepredicted andutilizedwith
various computational methods, IM data have not yet been utilized to
predict monomeric structure from sequence.

Therefore, in this work a non-stochastic grid-based algorithm,
PARCS, has been implemented in Rosetta59,60 to predict CCS from
structure. It has been demonstrated that PARCS yields comparable
results to IMPACT in terms of speed and accuracy. Next an IM score
term has been developed for use in the ab initio61–63 and comparative
modelling (CM)64 protocols in Rosetta, in combination with the
Rosetta all-atom scoring function65. This score term scored structures
based on their (dis)agreement with experimental IM data. When this
score term was included, the prediction of structures improved for a
benchmark of 25 proteins: the RMSD improved by an average of 2.0 Å
and 17/25 structures were predicted accurately.

Results
In this study, to utilize IM data to predict tertiary (monomeric) struc-
tures in Rosetta, an algorithmdesigned for rapid prediction of CCS has
been developed and implemented. This method uses Projection
Approximation (Eq. 1) via a grid-based calculation of Rough Circular
Shapes (PARCS). Subsequently, a score function was developed (Eq. 2
and Eq. 3) that assessed the agreement of Rosetta-generatedmodels to
the CCSIM for tertiary structure prediction.

CCSCalculations by PARCS are fast, accurate and comparable to
existing software
Area calculation in projection approximation methods is typically
performed using Monte Carlo integration methods. In such an
approach, probes representing the buffer gas particle are fired upon
the randomly oriented 2D-projected target structure to calculate
the area of the projection. A large number of probes is usually
required for CCS calculations to converge. However, when a large
number of probes is used, random probes frequently survey areas
with no protein present, resulting in unnecessary calculations and
thus adding to the computational cost66. Therefore, run-to-run
variability in probe-based projection area calculation per rotation is
common. To circumvent this issue, in PARCS, the projection area is
calculated by projecting the structure on a 2D grid and then geo-
metrically estimating the projection area directly (by geometrically
filling the grid based on locations of atoms and radii of atoms and
probes). This approach eliminates the variability in projection area
calculation. Therefore, the only attribute contributing to the
variability in CCS calculations using PARCS is the random rota-
tions (Eq. 1).

To benchmark our PARCS algorithm, CCS values for 4465 non-
homologous protein structures in the PARCS evaluation dataset
were calculated. Results for convergence of CCS calculations at
varying number of random rotations on the PARCS evaluation
dataset are shown in Fig. 1a. The average standard deviation of the
CCS distributions for 100 rotations was only 2.26 Å2 (which was less
than 0.2% of the CCSPARCS on average) and decreased as the number
of rotations increased. The average of the standard deviations of the
CCS distributions was well below 2.0 Å2 for more than 100 rotations
as shown in Fig. 1a. For CCSPARCS, the default number of rotations
was set to 300, where the average standard deviation of the dis-
tribution was 1.31 Å2.

For all proteins in the PARCS evaluation dataset, CCS calculated
by PARCS was compared to CCS calculated by IMPACT, one of the
most widely used CCS calculation methods, as shown in Fig. 1b. A
strong correlation (R2 = 0.9996) was observed between CCSPARCS and
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CCSIMPACT with a root mean squared error (RMSE) of 21.03 Å2 and an
average percent error of 1.42%. The results demonstrate that PARCS
calculates CCS values as accurately as other projection approximation
methods.CCSPARCSwere then compared toCCSIM for the experimental
dataset. We observed a strong correlation (R2

PARCS = 0.991) between
CCSPARCS andCCSIM values as shown in Fig. 1c, where IMdata collected
in nitrogen and helium buffer gas are shown in blue and red respec-
tively. We observed an average percent error of only 5.83% (similar to
that of IMPACT at 5.61%) from CCSIM. To use IM data in computational
structure prediction methods (where CCS prediction is required on a
large number of decoy structures), the speed of CCS calculations
should be within about a second. Therefore, calculation times of
PARCSwere compared to that of IMPACT aspresented in Fig. 1d. Using
the PARCS evaluation dataset, PARCS took an average of 0.40 seconds
to calculate theCCSofproteinswhen 300 random rotationswere used
compared to 0.32 seconds for IMPACT. Thus, the timing of PARCSwas
comparable to IMPACT. We note that the slightly longer average time
for PARCS was due to additional steps performed by Rosetta when
reading in a PDB file (such as checks for correctness and adding
missing hydrogens59). For all 4465 proteins, calculations for PARCS
completed in under 1.0 second as shown in Fig. 1d. These results
indicate that PARCS in Rosetta offers similar speed and accuracy to
established PA algorithms. We hypothesized that the information
contained within CCSIM may be sufficient to predict structures
using CCSPARCS.

PARCS in IM score function improvesmodel selection in an ideal
dataset
In this study we sought to investigate the usefulness of the structural
information encoded in IM data for predicting the complete structure
of single-subunit proteins. However, it was unclear whether a single
CCS value, encoding overall size and shape, was sufficient to distin-
guish near-native from incorrect protein models. To test how useful
the information in CCS was for structure prediction, an IM score

function (Eq. 2) has been developed to score structures based on the
(dis)agreement with experimental IM data (Eq. 3). To assess the cap-
abilities of this score function to adequatelydistinguishgood frombad
models, we first tested it on the ideal dataset (where the experimental
CCSIM was replaced with CCSPARCS of the native structure for a set of
proteins representative of all unique architectures in the CATH data-
base, CCSIdeal). For each protein in the ideal dataset, 10,000 potential
structures were generated (decoy structures), using the protocol
outlined in Supplementary Methods (modelling protocol explicitly
noted for each protein in Supplementary Data 1) and scored using the
developed IM and RG score functions. Prediction results from the RG,
RS, and IM score functions were evaluated and compared based on
agreement with experimental structures (using the RMSD and TM-
Score of the lowest scoring model, i.e., the predicted structure, Sup-
plementary Data 2). We observed a significant improvement in model
quality upon the inclusion of ideal IM data. The predicted structures
with the IM score function were close to their native structures with an
average RMSD of only 3.7 Å. The average TM-Score of these predicted
models was 0.86. The models predicted with the RG score function (a
proxy score function that only favors compactmodels) had an average
RMSD and TM-Score of 5.7 Å and 0.80 respectively. As highlighted in
Fig. 2a, the models predicted with the IM score function generally had
lower RMSD (i) and higher TM-Score (ii) compared to those predicted
by the RG score function. These results suggest that the two quantities
(collision cross section and radius of gyration) donot provide the same
structural information and that CCS-based scoring far outperforms
modelling based solely on radius of gyration. Thus, RG cannot be used
as a substitute for the IM score function. Structures predicted with the
IM score function were then compared to those predicted with the RS
score function (default Rosetta score function that did not utilize IM
data). As shown in Fig. 2b (i), the RMSD of the predicted structures
improved or remained unchanged for 58 out of 60 proteins, with an
average RMSD improvement of 0.8 Å. The TM-Score also improved or
remained unchanged for 58 proteins as shown in Fig. 2b (ii). The
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Fig. 1 | Analysis of projection area using rough circular shapes (PARCS) algo-
rithm. a Convergence of collision cross section (CCS) calculation using PARCSwas
tested on, n = 4465, biologically independent samples (crystal structures deposited
in the Protein Data Bank [PDB]) over 100 independent runs for 7 separate cate-
gories of random rotations ranging from 100R400 random rotations. The mean
and the standard error of the mean for these distributions of 100R400 random
rotations were 2.257 ± 0.016 Å2, 1.852 ± 0.013 Å2, 1.598 ± 0.011 Å2, 1.415 ± 0.010 Å2,
1.306 ± 0.009 Å2, 1.222 ± 0.009 Å2, 1.162 ± 0.008 Å2 respectively. The white dots
represent the median in each violin distribution. The black bar in the center of the
distribution is the interquartile range (IQR). The black stretched line extends from

the “first quartile– 1.5 IQR” to the “third quartile + 1.5 IQR”. Values beyond this range
are considered outliers. b Comparison of CCSPARCS to that of CCSIMPACT (of these
n = 4465 biologically independent samples) exhibited a very strong correlation (R2

of 0.9996).cAstrongcorrelation (R2 of0.991)wasobserved for predictedCCSPARCS
values of PARCSwhen compared with CCSIM from nitrogen (blue) and helium (red)
buffer gas for the experimental dataset (n = 25 biologically independent samples
with ion mobility data). d Comparison of CCS calculation time of PARCS and
IMPACT (n = 4465 biologically independent samples) showed that PARCS and
IMPACT performed equally well in terms of speed. Source data are provided as a
Source Data file.
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average TM-Score improvement over the RS score function was 0.02.
Three of the predicted structures (that showed significant above-
average improvement) from each the score function (RG, RS, and IM)
are shown inFig. 2c, where thenative structure (grey)was compared to
the predicted model of the RG (red), RS (blue), and IM (purple) score
function.

The ability of the IM score function to predict structures as a
function of sample size was also tested by varying the number of
scored decoy structures from 100 to 10,000 for the ideal dataset. The
average RMSD and TM-Score effectively improved for the IM score
function as the number of predicted decoys increased (Supplementary
Fig. 1a [i] and Supplementary Fig. 1a [ii] respectively). However, after

about 7000 structures this improvement was negligible, suggesting
that users should generate at least 7000 decoys.

Along with the improvement in model selection, the IM score
exhibited amorewell-defined energy funnelwhen compared to the RG
and RS score functions. We saw a 9.5-fold increase in Pnear when we
used the IM score function over RS. We also observed a 22.4-fold
increase in Pnear with the IM over RG score function. This suggests that
inclusion of IM data significantly improved the goodness of the score
versus RMSD and TM-Score funnel. Finally, to test the robustness of
the IM score function in the presence of experimental uncertainty,
noise was introduced to the ideal CCS data (as outlined in Supple-
mentary Methods). These “noisy” ideal CCS data were then used with

Fig. 2 | Protein structure prediction with and without ideal ion mobility (IM)
data. Consistent improvement in model selection was observed when using the IM
score function for the 60 proteins in the ideal dataset. The predicted models from
the IM score function were compared to that of the a radius of gyration (RG) and
b Rosetta (RS) score functions in terms of their respective (i) root mean square

deviation (RMSD) and (ii) templatemodelling score (TM-Score). Forbotha,bmodels
predicted with comparative modelling (CM) and ab initio are shown with black and
yellow circles respectively. c Comparison of predicted structures with RG (pink), RS
(blue) and IM (purple) score function to their native structures (grey) for three
members of the ideal dataset. Source data are provided as a Source Data file.
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the IM score function to predict structures. As shown in Supplemen-
tary Fig. 2a, the IMscore versus TM-Score distributions for all generated
structures of the ideal dataset (600,000 structures) at 0% noise (blue,
[i]), 15% noise (orange, [ii]), and 30% noise (green, [iii]) were largely
identical. Furthermore, no significant change in the global fold was
observed for the 60 best scoring models that were predicted with 15%
and 30% randomnoise (Supplementary Fig. 2b). The averageTM-Score
of the predicted structures at 15% and 30% noise differed by only 0.01
and 0.02, respectively, when compared to that in the absence of noise
for the ideal dataset. This suggests that the IM score function is not
affected by reasonable amounts of random noise.

Due to the possibility of a gas-phase collapse, whichwould lead to
a lower measured CCS than expected based on the protein crystal
structures67–70, we alsoused the IM score function to predict structures
based on artificially reduced CCSIdeal values (for the ideal dataset) that
were significantly lowered (up to 30%) compared to those found in the
native structures (Supplementary Data 3). When these adjusted CCS
values were used in scoring, the average radius of gyration (of the
predicted models) decreased only slightly from 20.28 Å to 19.92 Å (as
CCSIdeal decreased by 30%) while the average radius of gyration of the
native structures was 20.62 Å. This analysis indicated that even sig-
nificantly smaller than expected CCS values induced only minimal
compaction in the global fold of the predicted structures compared to
the native models. This compaction is expected, since the IM data
yields information about the shape and size of proteins, therefore
lowering the CCSIdeal will lead to prediction of models that are more
compact. Several studies also indicate that minor gas-phase compac-
tion could result due to the self-solvation of surface residue side
chains55,71–74. Therefore, to test whether the observed minor compac-
tion was simply due to the exposed side chains self-solvating in the gas
phase, we also analyzed the neighbor count (NC) of surface residues
(as defined earlier) in the predicted models using the same decreasing
CCSIdeal (Supplementary Data 3). A low NC generally corresponds to
residues that are more solvent exposed and vice versa. Our results
show that as CCSIdeal was lowered (as described above), the IMmodels
tended to exhibit surface residues that were only slightly less solvent
exposed on average, suggesting that the side chains of these predicted
models were only slightly collapsed compared to those of the native
structures. However, the average difference of the surface residue NC
(from that of the native structures) was only 0.78 when surface resi-
dues were defined as the residues with the lowest 20% of neighbor
counts. Furthermore, the corresponding average RMSD increased to
no more than 4.70 Å and the TM-Score decreased to no less than 0.84
when the CCS was artificially lowered up to 30%. These findings indi-
cated that a small amount of side chain collapse for surface residues is
the primary reason for the increase in compactness. Additionally,
these results were expected since Rosetta used an implicit solvation
model during model generation. As a result, gas-phase like structures
were not likely to be found within the ensemble. Moreover, the
IMScore_Term was determined using an upper bound (UB) and lower
bound (LB) as shown in Eq. 3. If theΔCCS (absolute difference between
the predicted and experimental CCS) was higher than the UB, then the
structure in question was given a constant maximum penalty (Eq. 3).
Effectively, this caused the ranking of structures using IM score func-
tion to be the same as the RS score function.

Protein structures in the ideal dataset (60 proteins) were also
predicted with AlphaFold2 (AF) and RoseTTAFold (RF). These struc-
tures were predicted both with and without templates (as outlined
in Supplementary Methods). Furthermore, we benchmarked the pre-
diction results of AF and RF both with and without templates for the
ideal dataset as shown in Supplementary Fig. 3. For the ideal dataset,
for both AF and RF, the average RMSD decreased by 0.2 Å and 0.33 Å
respectively when templates were used. Similarly, the average TM-
Score increased by 0.01 and 0.04 when templates were used for pre-
dicting the structures of proteins. In Fig. 3a, all three methods (IM,

AFwith_templates, and RFwith_templates) predicted better structures than RS
(SupplementaryData 2). For the ideal dataset, the averageRMSDof the
predicted models from the IM score function was higher than those
predicted with AFwith_templates by 0.3 Å. In contrast, the average RMSD
of IM predicted models were lower by 0.6Å when compared to those
predicted with RFwith_templates. These results are highlighted in Fig. 3a
(i). The average TM-Score of the IM predictedmodels were lower than
AFwith_templates and RFwith_templates by 0.06 and 0.03 respectively as
shown in Fig. 3a (ii). However, there were 28 cases where the IM pre-
dicted models that were better or the same when compared to
AFwith_templatesmodels. The averageRMSDandTM-Score for this subset
improved by 2.7 Å and 0.04, respectively. IM also predicted 37models
that were better or the samewhen compared to RFwith_templatesmodels.
For this subset, the average RMSD and TM-Score improved by 2.6 Å
and 0.05 respectively. Figure 3b shows two such cases where the
predicted structure using IM (purple) matches the native (grey) sig-
nificantly more closely over the predicted AFwith_templates (cyan) and
RFwith_templates (red) structures. Additionally, the average absolute
percent error of CCSPARCS to CCSIdeal of the top scoring models of RG,
RS, AFwith_templates, RFwith_templates, and IM were 4.6%, 3.1%, 2.4%, 2.2%
and 0.9% (Supplementary Data 4). This is expected because the IM
score function predicts models that agree the most with IM data as
compared to all other methods that do not use this information for
structure prediction. Furthermore, large deviations in normalized
ΔCCS (ΔCCS divided by sequence length) were also observed for
poorly predicted AFwith_templates and RFwith_templates structures (TM-
Score below0.5) as shown in Fig. 3c. Similar results were also observed
for poorly predicted AFwithout_templates and RFwithout_templates structures
as shown in Supplementary Fig. 4 (and Supplementary Data 5).This
suggested that in the future the IM score functioncould also beused to
assess structures generated with AF and RF (both with and without
templates). Given the sparseness of the data (CCS is a single number
denoting the average cross-sectional area of the protein) these results
indicated that the overall size and shape information contained in the
IMdata indeed had a strong potential to facilitate the discrimination of
good frombadmodels. While an encouraging proof of principle, these
results do not account for the uncertainty associated with real
experimental IM data. An average percent error of 5.83% between
CCSPARCS and CCSIM was observed for the experimental dataset
(Fig. 1c). Thus, when we turn to experimental IM data for the structure
prediction, additional uncertainty will be present. Therefore, we next
present tests of the effectiveness of IM data to improve structure
prediction that are based on use of a dataset with experimental
IM data.

IM data improve model selection of protein structures in an
experimental dataset
For proteins in the experimental dataset, 10,000 decoy models were
generated with either the ab initio or comparative modelling (CM)
protocols as specified in Supplementary Data 6. Each of these decoy
models was scored with IMdata (Eq. 2) and the predictedmodels were
then compared to those scored with the RS and RG score functions
(Supplementary Data 7). Again, we saw a notable improvement in
model quality upon the inclusion of IM data. In Fig. 4a and b, (i) the
RMSDs (and [ii] TM-Score) of the best scoring models with IM data are
compared to those from the RGandRS score functions. As highlighted
in Fig. 4a (i), the average RMSD of the predicted structures with the IM
score function was 5.3Å, while the average RMSD for those predicted
with the RG score function was 10.6Å. Similarly, the average TM-Score
of the IM and RG predicted structures were 0.67 and 0.52 respectively
(Fig. 4a [ii]). These results further established that model discrimina-
tion using actual experimental IM data significantly outperforms the
simple proxy score function (RG) that only ensured protein com-
pactness. Compared to the RS score function as shown in Fig. 4b (i),
the RMSDs of the predicted models for proteins in the experimental
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dataset either improved or remained unchanged in all 25 cases. Simi-
larly, the TM-Score either improved or remained unchanged for 22/25
proteins (Fig. 4b [ii]). The RMSD improved by an average of 2.0 Å
(average TM-Score improvement of 0.03) when IM data were utilized
as restraints. Of these 25 cases, 17 proteins were ultimately predicted
with an RMSD of less than 5.5 Å, compared to 13 proteins without IM
data (RS score function). Figure 4c shows structures of the predicted

models (aligned to the native structures in grey) obtained with the RG
(pink), RS (blue), and IM (purple) score functions. The largest RMSD
improvement was observed for the system β-crystallin B2 (PDB ID:
1YTQ), whose RMSD decreased from 17.7 Å to 5.0 Å. The TM-Score for
this protein improved from 0.46 to 0.70 when the predicted structure
from RS was compared to that of the IM score function. Similarly, for
the system Hemolysin E (PDB ID: 1QOY), the IM score function

Fig. 3 | Comparison of predictions with ideal ion mobility (IM) data to those of
AlphaFold (AF) and RF (RosettaFold). Predictions, for the ideal dataset, using
the IM score function were compared to that of Rosetta (RS), AFwith_templates, and
RFwith_templates. a Violin distributions (n = 60 biologically independent samples
over 4 independent modelling approaches), of (i) root mean square deviation
(RMSD) and (ii) template modelling score (TM-Score) of the predicted structure
using the RS, IM, AFwith_templates and RFwith_templates score functions. For protein
structure predictions with methods shown in a the mean and the standard error
of mean in (i) are 4.46 ± 0.74 Å, 3.72 ± 0.65 Å, 3.43 ± 0.77 Å, and 4.37 ± 0.80 Å
respectively. Similarly the mean and the standard error of mean in (ii) are 0.84 ±
0.03, 0.86 ± 0.02, 0.92 ± 0.02, and 0.88 ± 0.02 respectively. For the violin

distributions in a (i) and a (ii) the white dots represent themedian. The black bar
in the center of the distribution is the interquartile range (IQR). The black
stretched line extends from the “first quartile −1.5 IQR” to the “third quartile + 1.5
IQR”. Values beyond this range are considered outliers. b Comparison of pre-
dicted structures with AFwith_templates (cyan), RFwith_templates (red) and IM (purple)
to their native structures (grey) for the ideal dataset. cHigh normalized absolute
difference in collision cross section of the predicted structure and the native
structure (ΔCCS divided by sequence length) for structures predicted with
AFwith_templates (cyan) and RFwith_templates (red) generally corresponded to struc-
tures with low TM-Score as seen for the ideal dataset. Source data are provided
as a Source Data file.
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predicted a significantly better model when compared to that pre-
dicted by the RG score function. The RMSD and TM-Score differences
(between the models selected by the IM and RG score functions) were
27.3 Å and 0.66 respectively. No significant difference was observed in
IM score model selection with respect to IM data collected from the
two different experimental conditions (helium and nitrogen buffer
gas). This suggests that IM data from both buffer gases are equally
useful for modelling. The score vs RMSD and TM-Score distributions
for several benchmark proteins using the RS (blue) and IM (purple)
score functions are shown in Fig. 5a (i) and Fig. 5a (ii) respectively. In
these distributions, the predicted models from RS and IM are marked

with a blue and purple star, respectively. We observed a general
improvement in Pnear upon scoring with the IM score function with a
4.6-fold average improvement over that of the RS score function
(Supplementary Data 7). The average Pnear also increased by 43.4-fold
when the score distributions were compared to those from the RG
score function. This showed that the goodness of the score vs RMSD
and TM-Score distribution is generally improved when IM data are
included to predict structures. For comparison purposes, protein
structures were also predicted with AFwith_templates and RFwith_templates

for the experimental dataset as shown in Fig. 5b. The predictedmodels
were compared to their native structures by RMSD as shown in

Fig. 4 | Protein structure prediction with and without experimental ion
mobility (IMdata).Consistent improvement inmodel selection using the IM score
functionwasobserved for the 25proteinswith experimental IMdata. The predicted
models from the IM score function were compared to those of the a radius of
gyration (RG) andbRosetta (RS) score functions in terms of their respective (i) root
mean square deviation (RMSD) and (ii) template modelling score (TM-Score). For

both a, b, circle and triangle indicate IM data collected in helium and nitrogen
buffer gas respectively; while models predicted with comparative modelling (CM)
and ab initio are shown in black and yellow respectively. cComparisonof predicted
structures using the RG (pink), RS (blue) and IM (purple) score function to their
native structures (grey). Source data are provided as a Source Data file.
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Fig. 5b (i) (and Fig. 5b [ii] for TM-Score). On average, AFwith_templates and
RFwith_templates both predicted structures better than the IM score
function. Additionally for the experimental dataset, we observed that
use of templates with AF and RF improved the RMSD and TM-Score

difference when compared to prediction results without templates
(Supplementary Fig. 5). The RMSD difference improved by 0.58 Å and
1.94 Å for AF and RF respectively. Similarly, the TM-Score difference
for AF and RF improved by 0.03 and 0.04 respectively. Similarly,

Fig. 5 | Protein structure prediction results for the experimental dataset and
model quality assessment. The score distribution improves to a more funnel-like
shapewith the ionmobility (IM) score function for the experimental dataset. a This
is highlighted by the score vs (i) root mean square deviation (RMSD) and (ii) tem-
plate modelling score (TM-Score) distributions of four proteins that showed sig-
nificant improvement with the IM (purple) score function over Rosetta (RS, blue)
score function. The best scoring models from both predictions are marked with a
blue and purple star for RS and IM, respectively. b Violin distributions,
n = 25, biologically independent samples over 4 independent modelling approa-
ches of (i) RMSD and (ii) TM-Score of the predicted structures with RS, IM,
AlphaFold with templates (AFwith_templates) and RosettaFold with templates
(RFwith_templates). For protein structure predictions with methods shown in a the

mean and the standard error of mean in (i) are 7.18 ± 0.99 Å, 5.33 ± 0.70Å, 3.13 ±
0.90Å, and 4.57 ± 1.08Å respectively. Similarly, themean and the standard error of
mean in (ii) are 0.64 ± 0.05Å, 0.67 ± 0.05Å, 0.88 ± 0.03Å, and 0.81 ± 0.04Å
respectively. For the violin distributions in b (i) and b (ii) the white dots represent
themedian. The black bar in the center of the distribution is the interquartile range
(IQR). The black stretched line extends from the “first quartile – 1.5 IQR” to the
“third quartile + 1.5 IQR”. Values beyond this range are considered outliers.
c Comparison of (i) RMSD and (ii) TM-Score of the predicted structures (with IM)
from both the experimental (diamond) and ideal (hexagon) dataset vs IM con-
fidence score.Models generatedwith comparativemodelling (CM) and ab initio are
shown inblack and yellow respectively. Similarly, theVoronota and P3CMQAscores
are shown. Source data are provided as a Source Data file.
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structures predictedwith the IM score functionwere better than those
predicted with RS (without the aid of IM data). Despite the impressive
performance of AF and RF, there were several cases where inclusion of
IM data outperformed those predictions. Therewere 6 cases (out of 25
proteins in the experimental dataset) where structure prediction was
better or the same, with the IM score function when compared to that
of AFwith_templates (Supplementary Data 7). The average RMSD and TM-
Score difference of this subset were 3.2Å and 0.04 respectively.
Similarly, there were 9 cases (Supplementary Data 7) where predic-
tions from IMoutperformed thosemodels predicted byRFwith_templates.
The average RMSD and TM-Score of this subset differed by 5.4 Å
and 0.13. Furthermore, the average absolute percent error of CCSPARCS
to CCSIM of the top scoring models of RG, RS, RFwith_templates,
AFwith_templates, and IM were 8.6%, 7.6%, 6.0%, 5.5%, and 5.4%, respec-
tively (Supplementary Data 8). This confirmed that the IM score
functionpredictsmodels thatbest agreewith the experimental IMdata
when compared to all other structure predictionmethods (RG, RS, RF,
andAF). Furthermore, we focusedon a subset of 54 proteins fromboth
the experimental and ideal dataset for which either the CM protocol
with non-perfect templates or the ab initio protocol (template-free
modelling) were performed. For this subset, we defined non-perfect
templates as templates with sequence identity and coverage (to target
protein) ranging anywhere from 14% to 84% and 6% to 100% respec-
tively. Next, for this subset we compared the best scoring models to
their native structures for the radius of gyration (RG), Rosetta (RS), and
ion mobility (IM) score functions. Again, we observed consistent
improvement inmodel selection for the IM score function over the RG
and RS score functions, for both the ideal and experimental dataset as
shown in Supplementary Fig. 6. Compared to the RG score function,
the IM score improved the RMSD of the selected model (for all the 54
proteins in this subset, Supplementary Data 9) by 2.72 Å on average.
The TM-Score for this comparison also improved by 0.08 on average.
Similarly, compared to the RS score function, the IM score improved
the RMSD of the selectedmodel by 1.12 Å and the TM-Score by 0.02. A
summary of this analysis can be found in SupplementaryData 10. Thus,
we conclude that IM data can improve protein structure prediction
both in complete absence of templates and in the presence of non-
perfect templates. In summary, these results demonstrated that
experimental IM data can offer shape and size information that can be
used to improve protein structure prediction.

IM confidence score discriminates accurate and inaccurate
models
The inclusion of IM data helped improve structure prediction for all
25 proteins in the experimental dataset. However, there were 8
cases where the RMSD of the selected model (even after improve-
ment) was greater than 5.5 Å (five of those eight cases had TM-
Scores less than 0.5). This knowledge was available to us since the
native structures were known for the models generated within this
benchmark dataset. However, in true blind structure prediction
protocols, RMSD or TM-Score information is not available. For this
reason, we developed a confidence measure, the IM confidence
score, that allowed us to selectively flag successful prediction cases
in the absence of native structure. The IM confidence score was
defined as the average score of the top 100 scoring models divided
by sequence length. According to this metric analysis, the high and
low confidence structures were separated by a score cutoff of −2.54.
This metric flagged all inaccurate predictions as low confidence,
whereas all high confidence predictions were accurate. We tested
whether the IM confidence score made predictions that surpassed
or at least matched other software that can assess model quality in
the absence of IM data. For this purpose, IM confidence score
results were benchmarked against two other model quality assess-
ment programs (Voronota and P3CMQA) as shown in Fig. 5c for both
the experimental (diamond) and ideal dataset (hexagon). To better

compare the performance of the IM confidence score to Voronota
and P3CMQA, the confidence score was scaled (as outlined in Sup-
plementary Methods) such that it ranged from 0 to 1, with 1 being
themost confidentmodel and 0 being the least confident (similar to
the convention in Voronota and P3CMQA) as shown in Supple-
mentary Fig. 1 (b) with (i) RMSD and (ii) TM-Score. Our results
(Fig. 5c and Supplementary Fig. 1 [b]) indicated that the IM con-
fidence score were comparable to that of Voronota and P3CMQA.

Discussion
Ionmobility (IM) has emerged as a prime tool to study proteins in their
native states using mass spectrometry (MS) due its ability to conserve
native-like structural information in the gasphase. Furthermore, native
IM-MSmeasurements are relatively fast, use very little sample, and are
highly chemically specific, making them both relatively easy and
informative as compared to many other types of structural biology
techniques. Additionally, native IM-MS measurements are not limited
by the size of the system. For these reasons, IM-MSprovides awealth of
structural information and can be used as routine analysis when
compared to many other types of experimental techniques. However,
the information obtained is sparse, not directly allowing for full
structure elucidation. Thus, computational techniques are needed to
deduce structural information from IM data. In this study we devel-
oped a new algorithm for structure prediction of single subunit pro-
teins from IM data. To achieve this, we first developed a method
(PARCS) that could predict collision cross section (CCS) from struc-
tures, which has been implemented in Rosetta as a stand-alone appli-
cation. Following the successful benchmarking of this application, a
score term, based on restraints derived from IM data, has been
developed to predict native-like structures. This score termwas tested
on a set of 60 structures from the PDB, where CCSPARCS (with simu-
lated noise) of the native structure was treated as the experimental
CCSIM. This was done, as a proof of principle, to check whether the
score function could translate the structural information (encoded in
IM data) into spatial restraints in the absence of model error. Based on
RMSD and TM-Score analysis, we observed that the inclusion of IM
data (to the Rosetta score function) improved structure prediction
results for 58 out of 60 structures. Since radius of gyration (Rg) has
previously been used as a simple substitute for IM data, we tested the
IM score function against a proxy score function that utilized Rg to
favor compact models. From our results, we conclude that the two
quantities (CCS and Rg) point to different structures and thus a simple
compactness-based proxy score function cannot be used as a sub-
stitute for the IM score function. Following this positive validation, the
score function was tested on a benchmark set of 25 proteins with
experimental IM data. We showed that IM data improved model
selection, as demonstrated by analyzing the best scoring models with
several metrics. Next, we benchmarked our method against recently
developed structure prediction methods, AlphaFold2 (AF), and
RoseTTAFold (RF), for both the ideal and experimental datasets.
Despite the remarkable accuracy of these deep learning methods, our
results show that there were several cases where the IM score function
could improve structure prediction over AF and RF. Furthermore, our
results also suggest that large deviations of predicted CCS from
experimental CCS for AF and RF structures are indicative of models
withpoor fold, further underscoring theusefulnessof IMdata at aiding
accurate structure identifications. We also developed a confidence
metric (IMconfidence score) to successfully separate goodpredictions
from bad predictions in the absence of native structure. Our current
computational workflow illustrates that CCS obtained from IM
experiments, despite its sparseness, provides sufficient information on
the overall shape and size of proteins to be used as restraints to
improvemodel selection in protein structure prediction. Furthermore,
our results also suggest that, despite its extensive assumptions and
approximations, the projection approximation method is sufficient in
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an integrative modelling pipeline and provides the ability to rapidly
compare large numbers of computed results to experiment, which can
be very time-consumingwithmore physically explicit methods such as
the Trajectory Method. With these benchmarks in place, future
investigation using these higher-level CCS computation methods
could help refine themodel further. This study also demonstrates how
information from native IM techniques (gas phase) can be used to
successfully infer solution structure. Our developed CCS calculation
method and score function are freely and easily accessible through
Rosetta Commons. Supplementary Note 1 shows examples on how to
use the PARCS application and Supplementary Note 2 contains
instructions on the use of IM data in structure prediction. Further-
more, all related data (including all models generated) can be found in
our GitHub repository75 (https://doi.org/10.5281/zenodo.6726418).
Further work will focus on improving methods to incorporate CCS
data for protein complexes using RosettaDock76 and on the use of
multiple complementary data types (such as the combination of
covalent labeling77–79, surface-induced dissociation80, cryo-EM81,82 and/
or NMR83,84 with IM data) for protein and protein complex structure
prediction in Rosetta.

Methods
Projection approximation using rough circular shapes
Average CCS of biomolecules are determined from IM experiments
basedon the amount of time required for the ion to traverse the region
of inert buffer gas (usually heliumor nitrogen) under the influence of a
weak electric field43,45. To use IM data in a structure prediction proto-
col, we developed Projection Approximation using Rough Circular
Shapes (PARCS) in Rosetta. The schematic (a) and the illustration (b) in
Fig. 6 demonstrate how the PARCS algorithm computes CCS from
structure and estimates area of a projection, respectively. The PARCS
algorithm, as shown in Fig. 6a, takes 3D atomic protein coordinates as
input. Next, the structure is randomly rotated. For each rotation, the
structure is projected on a 2D grid (grid cell area of 1 Å2) in the x-y, x-z,
and y-z planes as shown in Fig. 6a (i). In the 2D grid, the projection of
the protein is centered, and the grid extends 5 Å beyond the most
extreme atom in each direction. For each atom on the 2D grid (Fig. 6a

[ii]), the center grid cell is filled as denoted by the blue grid cell in
Fig. 6b (ii). Then, eight additional cells (red grid cells in Fig. 6b [ii]) are
also filled. The distance of these eight grid cells from the central cell
(i.e., radius of the circular projection) is basedon the sumof the radii of
the projected atom and the buffer gas (r in Fig. 6b [ii]). An effective
atomic cross-sectional radius of 1.91 Å is used for heavy atoms (carbon,
sulfur, oxygen, nitrogen, and phosphorous) and 1.21 Å is used for
hydrogen atoms. A buffer gas radius of 1.0 Å and 1.82 Å is used in the
case of helium43 and nitrogen85, respectively. The eight points are
positioned such that two adjacent points on the circumference form a
45o angle from the center point as shown in Fig. 6b (ii). This process is
repeated for all atoms in the protein, filling the overall grid as shown in
Fig. 6b (iii). Finally, the projection area (A) is derived by summing the
areas of the filled grid cells. From the x-y, y-z, and x-z projections for
each random rotation, three projection areas (Ai

x-y, Ai
x-z and Ai

y-z) are
obtained. The CCS of the structure (CCSPARCS) is then acquired from
the average area of the total number of projections (N = 3R, where R is
the total number of random rotations) as shown in Eq. 1.

CCSPARCS =
∑R

i Ax�y
i +Ax�z

i +Ay�z
ið Þ

N
ð1Þ

IM score function in Rosetta
CCS fromexperimental IMdatawere incorporated as a spatial restraint
for integrative Rosetta modelling as it provides information about
protein size and shape. Therefore, to integrate this information in
Rosetta for protein structure prediction, a score term (IMScore_Term)
was developed to quantify agreement of protein structures with IM
data, using CCS as the restraint. The evaluation score, IMScore, was
defined as a sum of the IMScore_Term score term with the Rosetta
REF2015 score function65 as shown in Eq. 2.

IMScore =RS + IMScore Term ð2Þ

In Eq. 2, RS is the energy of the structure obtained from the Rosetta
REF2015 score function. The IMScore_Term term is a penalty function (as

Fig. 6 | Overview of collision cross section (CCS) calculation using rough cir-
cular shapes (PARCS) algorithm. a Schematic of the PARCS algorithm to predict
CCS from structure. (i) Three projections are obtained from each rotation. (ii) For
each atom in each projection the 2 dimensional (2D) grid is filled according to a
9-point circle approximation. (iii) The projection area is determined from the
number of filled grid cells. b Illustration of a (i) 2D projection of a single random

rotation where the carbon, sulfur, oxygen, nitrogen, and hydrogen are colored
grey, yellow, red, blue, and white respectively. (ii) Each atom is projected on a grid
with a cell size of 1 Å2. The center grid cell and eight other grid cells at a distance r
(based on the radii of the given atom and the buffer gas) from the center of the
atom are filled. (iii) Projection of the randomly rotated protein after the grid cells
are filled according to the PARCS algorithm.
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defined and shown in Eq. 3 and Supplementary Fig. 7, respectively)
basedon the absolute difference (ΔCCS) betweenCCSPARCS andCCSIM.
This function includes a lower bound (LB) and an upper bound (UB)
cutoff (as shown in Eq. 3) to account for error24. ΔCCS below LB (10 Å2)
are not penalized and ΔCCS above UB (100Å2) are given a maximum
penalty of 100, with a fade function used in between. Conceptually,
this scoring function penalizes structures with high deviation from
experiment.

IMScoreTerm =

0 ifΔCCS<LB

100 2x3 � 3x2 + 1
� �

if LB<ΔCCS<UB

100 if ΔCCS>UB

8
><

>:

x = � ΔCCS�UB
UB�LB

� �
ð3Þ

IM datasets
In thiswork, our aimwas to study predominantly globular and ordered
proteins within all datasets. Values from CCSPARCS were compared to
CCSIMPACT as well as evaluated for speed and precision on 4465 non-
homologous protein structures (PARCS evaluation dataset) extracted
from the protein databank (PDB)86 (http://www.rcsb.org/) using the
PISCES87 webserver (http://dunbrack.fccc.edu/pisces). For this dataset
(all PDB IDs used can be found in the Source Data file), the sequence
identity was less than or equal to 10%, sequence length was between
40–250 residues, non-X-ray andCA-only entrieswere excluded and the
PDBswere culled by chain. For CCS prediction and speed comparison,
PARCS was benchmarked against IMPACT43 (with flag ‘-H’ to include
hydrogens) based on the calculations performed on the PARCS eva-
luation dataset. This dataset was also used to test the convergence of
PARCS with respect to the number of rotations. In this convergence
test, the standard deviation of 100 separate CCS calculations for each
protein at varying numbers of rotations were obtained and assessed
for the optimal number of random rotations required for calculations
to converge.

To evaluate the ability of the score term (Eq. 3) to distinguish
native fromnon-native proteinmodels in the case of an error-free CCS
prediction, a set of 60 proteins was selected from the PDB such that it
contained all unique architectures (list of monomers shown in Sup-
plementary Data 1) as classified by the CATH Protein Structure Clas-
sification database88. The sequence length for proteins in this dataset
ranged from 58 to 965. A set of structure prediction experiments
(which will be described in detail in the following sections) was per-
formed on this dataset, where the experimental CCS was simulated by
predicting CCS of the native structure with PARCS. Therefore, this
dataset was referred to as the ideal dataset. The simulated CCS
(CCSIdeal) values ranged from 767 Å2 to 4130 Å2 for the 60 proteins in
the ideal dataset. Furthermore, to address the effect of uncertainty in
CCS valueswhenusing the IMscore function (Eq. 2), varying degrees of
noise were introduced to the simulated CCS data (as outlined in Sup-
plementary Methods). The score function was also tested on actual
experimental IM data, i.e., structures with CCSIM (experimental data-
set). The experimental dataset18,89–93 consisted of 25 monomeric pro-
teins that also had structural information deposited in the PDB (as
outlined in Supplementary Data 6). Sequence lengths ranged from
26–691 residues andCCSIMvalues (for the lowest charge states) ranged
from 588Å2 to 4580Å2. Additionally, the proteins exhibited an average
percent disorder of only 13.2% and 10.7% as calculated by the Rosetta
ResidueDisorder94,95 application for the experimental and ideal dataset
respectively.

Ab initio, comparative modelling, AlphaFold2, and RoseTTA-
Fold protocols for structure prediction
To test whether shape and size information encoded in IM data were
sufficient to discriminate between low and high RMSD (and TM-Score)

models of single-subunit proteins,we tested our algorithmonboth the
ideal and experimental dataset. For these two datasets, the Rosetta
(v.3.1.3) ab initio protocol was used for proteins with sequence length
less than 155 residues, otherwise the Rosetta multi-template com-
parative modelling (CM) protocol was used. The templates and
weights associated with all proteins for CM are provided in Supple-
mentary Data 11 and Supplementary Data 12 for the ideal and experi-
mental dataset respectively. The 3mer and 9mer fragments required
for both protocols were generated using the fragment picker tool96 in
Rosetta. The protocols (ab initio and CM) for both the ideal and
experimental data set are further detailed in the Supplementary
Methods. All structures generated from the ab initio and comparative
modelling protocols (including the recovered structures for selected
proteins in the experimental dataset as shown in Supplementary
Data 13)were subjected to theRosetta Relax protocol (termreferred to
as RS in Eq. 2). The IM data, ideal and experimental, were then used to
score all the structures generated for each protein in Supplementary
Data 1 and Supplementary Data 6, respectively. Radius of gyration has
previously been used as proxy for IM data97. Therefore, the IM score
function was also benchmarked against a simple proxy score function
(RG) that was solely based on radius of gyration (described in
the Supplementary Methods section), and thus favored compact
models for proteins in both datasets. The top scoring model was
designated as the predicted structure. AlphaFold2 (v.2.0.0)98 and
RoseTTAFold (v.1.1.0)99 (protocols detailed in the Supplementary
Methods) were also benchmarked (with and without templates) for
both the datasets to further assess the effectiveness of IM data.

Analysis metrics used for evaluating predictions
We quantitatively assessed the quality of our predicted models
using several of the following metrics. The global RMSDs (root-
mean-square deviations) of the predicted models to their native
structures were calculated. Predictions with IM data where RMSD
was within 0.5 Å of the RMSD of the structure predicted without IM
data were defined as unchanged. Next, Pnear

100, a goodness-of-
energy funnel metric (at kBT and λ set to 10 and 1 Å respectively),
was used to compare the score versus RMSDdistributions predicted
with the RG, RS, and IM score functions. Pnear ranges from 0 (a poor
energy funnel) to 1 (a well-defined energy funnel). All predicted
structures from both ideal and experimental datasets were further
evaluated with the template modelling score (TM-Score)101. TM-
Score was used to assess the topological similarity of the predicted
structures to native structures using the TM-Score program101. The
TM-Score metric ranges from 0 to 1, where scores below 0.17 indi-
cate randomly chosen unrelated proteins and a score higher than
0.5 corresponds to structures being generally in the same fold and a
score of 1 indicates a perfect match101.

Confidence metric used for identifying accurate and inaccurate
predictions
A metric was developed (IM confidence score) to quantify confidence
in predictions in the absence of known structure. The IM confidence
score was defined as the average score of the top 100 scoring models
predicted with IM data (using Eq. 2) divided by the sequence length
(i.e., average score per residue). The specific metric was chosen
because lower scores per residue are generally associated with more
native-like structures. Thus, structures were defined as high con-
fidence if the average residue score was less than −2.54 (above which
structures were defined as low confidence). Instances where the RMSD
of the prediction was less than 5.5 Å (correspondingly above 0.5 TM-
Score) and the average residue score was less than −2.54 were con-
sidered successful confidence measure cases. We chose an RMSD
cutoff of 5.5 Å (TM-Score cutoff of 0.5) since below that RMSD (and
above that TM-Score), protein topologies are generally predicted
correctly. The IM confidence score was further tested against two
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other model quality programs Voronota (v1.22.3149)102 and P3CMQA
(v.1.0.0)103 (protocol outlined in Supplementary Methods).

Analysis of compactness of model selected with IM score
function
We also investigated (using the ideal dataset) whether models pre-
dicted with the IM score function were biased towards a possible gas
phase energy minimum which might show signs of structural com-
paction. To do this, we reduced the CCSIdeal by 2% to 30% and rescored
with the IM score function. We subsequently analyzed the top scoring
structures (using the reduced CCSIdeal as part of scoring) for com-
pactness using radius of gyration. Next, we calculated the neighbor
count (NC) of all residues with the Rosetta application
per_residue_solvent_exposure25 (using the spheremethod with default
parameters). A residuewith highNC is approximated as buried, while a
residue with low NC is thought to be solvent exposed. Therefore, we
analyzed the NC of surface residues at varying reduced CCSIdeal. The
surface residues were approximated as the top X % residues with the
lowest NC in the native structure, where X varied from 5% to 20%.

Software usage for data analysis
Python v.3.7.3 was used for data analysis. Matplotlib v.3.1.2 was used
for the creation of all scatter plots, line plots and violin distributions.
PyMOL v.2.0.6 and Blender v.2.8.1 were used in combination to gen-
erate the figures of all proteins.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All crystal structures used in this study were retrieved from the Protein
Data Bank (PDB) and can be accessed at https://www.rcsb.org. The
accession codes of the structures in the ideal dataset are: 1IZ4, 1JMA,
1K7G, 1KB0, 1KTU, 1LI1, 1N7V, 1NLT, 1OKC, 1QHU, 1QQC, 1R3F, 1RNE,
1SUU, 1T9F, 1YNF, 1YU0, 1ZVC, 2F3L, 2FM9, 2GD5, 2ISB, 2JAI, 2P8H,
2QGQ, 2QSD, 2ZZQ, 3A1Y, 3BXO, 3C7X, 3CPW, 3E8T, 3EB7, 3EF6, 3ENI,
3G91, 3GUA, 3KYJ, 3M7M, 3N99, 3ODJ, 3P0Y, 3RST, 3S2O, 3SAE, 3VZ9,
3WPV, 4AI1, 4D6F, 4E7G, 4I1M, 4QMJ, 4XTK, 5KIS, 5LB7, 5MIN, 5U69,
5VSK, 6AZZ, 6S2M. The accession codes of the structures in the
experimental dataset are: 1BEB, 1BN1, 1CFD, 1DPX, 1EX3, 1FD3, 1FS3,
1HFX, 1HRC, 1J7N, 1LDS, 1LFG, 1OVA, 1QOY, 1UBQ, 1VXG, 1YTQ, 2MLT,
3INS, 3QYT, 3VWI, 4F5S, 4H2A, 6DAH,6PTI. TheCATHProtein Structure
Classification database was used to determine the architectures of
proteins and can accessed here: http://www.cathdb.info. The processed
simulation data in this work are available without any restriction from
GitHub (https://github.com/smturzo/IMMS/tree/v.1.0.0) and Zenodo75

(https://doi.org/10.5281/zenodo.6726418). Additionally, our GitHub
repository contains instructions on how this work can be reproduced.
Access to raw simulation data (not present in this repository due to size
limitation) can be obtained by emailing the corresponding author (lin-
dert.1@osu.edu). Processed simulation data can also be found in the
Supplementary Data files. Source data are provided with this paper.

Code availability
The Collision Cross Section application (PARCS v.1.0.0) and the Ion
Mobility score function are available for free to academic users
through the Rosetta software suite at https://www.rosettacommons.
org/software/. The current academic version of Rosetta (3.13) can be
freely downloaded from https://els2.comotion.uw.edu/product/
rosetta for academic users. The source code for PARCS and the Ion
Mobility score function (which are part of the Rosetta codebase) are
only made available to academic/non-profit/government entities and
commercial entities with a Company Contributor License. While
availability to the Rosetta codebase is free for academics/non-profit/

government entities, note that there is a Rosetta license fee for
industry users to gain access to the source code and the applications in
Rosetta (including the PARCS application and the Ion Mobility score
function). Currently the University ofWashington exclusivelymanages
all Rosetta licensing. More information on Rosetta licensing can be
found at https://www.rosettacommons.org/about/faq. Instructions to
run the PARCS application in Rosetta can be found in Supplementary
Note 1. Instructions onprotein structurepredictionwith IMdata canbe
found in Supplementary Note 2. Both of these instructions are
accompaniedby a step-by-step example. Additionally, instructions and
results of modifying the AlphaFold source code such that it predicts
models without the aid of templates can be found in Supplementary
Note 3 and Supplementary Data 14, respectively.
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