Search for Jackman Lab papers on PubMed



Krishnamohan A, Dodbele S, Jackman JE. Transient kinetic analysis for studying ionizations in RNA modification enzyme mechanisms. Methods in Enzymology. 2021. PubMed

Jackman JE. RNA Modification Enzymes Preface. RNA MODIFICATION ENZYMES. 2021. PubMed

Patel KJ, Yourik P, Jackman JE. Fidelity of base-pair recognition by a 3′–5′ polymerase: mechanism of the Saccharomyces cerevisiae tRNAHis guanylyltransferase. RNA. 2021. PubMed


Snyder KJ, Zitzer NC, Gao Y, Choe HK, Sell NE, Neidemire-Colley L, Ignaci A, Kale C, Devine RD, Abad MG, Pietrzak M, Wang M, Lin H, Zhang YW, Behbehani GK, Jackman JE, Garzon R, Vaddi K, Baiocchi RA, Ranganathan P.  PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight. 2020 Apr 23. PubMed


Howell NW, Jackman JE.  Impact of Chemical Modification on tRNA Function. Wiley Online Library 2019 Nov 21. Wiley

Howell NW, Jora M, Jepson BF, Limbach PA, Jackman JE.  Distinct substrate specificities of the human tRNA methyltransferases TRMT10A and TRMT10B. RNA 2019 Jul 10. PubMed

Matlock AO, Smith BA, Jackman JE. Chemical footprinting and kinetic assays reveal dual functions for highly conserved eukaryotic tRNAHis guanylyltransferase residues. J Biol Chem. 2019 Apr 18. PubMed

Chen AW, Jayasinghe MI, Chung CZ, Rao BS, Kenana R, Heinemann IU, Jackman JE. The Role of 3′ to 5′ Reverse RNA Polymerization in tRNA Fidelity and Repair. Genes (Basel). 2019 Mar 26;10(3). PubMed

Dodbele S, Moreland B, Gardner SM, Bundschuh R, Jackman JE. 5′-End sequencing in Saccharomyces cerevisiae offers new insights into 5′-ends of tRNAH is and snoRNAs. FEBS Lett. 2019 Mar 25. PubMed

Pöhler MT, Roach TM, Betat H, Jackman JE, Mörl M.  A Temporal Order in 5′- and 3′- Processing of Eukaryotic tRNAHis. Int J Mol Sci. 2019 Mar 19;20(6). PubMed

Krishnamohan A, Dodbele S., Jackman JE. Insights into Catalytic and tRNA Recognition Mechanism of the Dual-Specific tRNA Methyltransferase from Thermococcus kodakarensis. Genes (Basel). 2019 Jan 30;10(2). PubMed

Krishnamohan A, Jackman JE.  A Family Divided: Distinct Structural and Mechanistic Features of the SpoU-TrmD (SPOUT) Methyltransferase Superfamily. Biochemistry.  2019 Feb 5;58(5):336-345 PubMed


Dodbele S., Jackman J.E., Gray M.W. Mechanisms and Evolution of tRNA 5′-Editing in Mitochondria. In: Cruz-Reyes J., Gray M. (eds) RNA Metabolism in Mitochondria. Nucleic Acids and Molecular Biology, 2018, vol 34. Springer, Cham Springer Link


Krishnamohan A, Jackman JE.  Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10. Nucleic Acids Res. 2017 Sep 6;45(15):9019-9029. PubMed


Long Y, Abad MG, Olson ED, Carrillo EY, Jackman JE. Identification of distinct biological functions for four 3′-5′ RNA polymerases. Nucleic Acids Res. 2016 Aug 2. PubMed

Edvardson S, Elbaz-Alon Y, Jalas C, Matlock A, Patel K, Labbé K, Shaag A, Jackman JE, Elpeleg O. A mutation in the THG1L gene in a family with cerebellar ataxia and developmental delay. Neurogenetics. 2016 Jun 15. PubMed


Long Y, Jackman JE. In vitro substrate specificities of 3′-5′ polymerases correlate with biological outcomes of tRNA 5′-editing reactions. FEBS Lett. 2015 Jul 22;589(16):2124-30. PubMed

Rao BS, Jackman JE. Life without post-transcriptional addition of G-1: two alternatives for tRNAHis identity in Eukarya. RNA. 2015 Feb;21(2):243-53. PubMed


Gillis D, Krishnamohan A, Yaacov B, Shaag A, Jackman JE, Elpeleg O. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J Med Genet. 2014 Sep;51(9):581-6. PubMed

Abad MG, Long Y, Kinchen RD, Schindel ET, Gray MW, Jackman JE. Mitochondrial tRNA 5′-editing in Dictyostelium discoideum and Polysphondylium pallidum. J Biol Chem. 2014 May 30;289(22):15155-65. PubMed

Smith BA, Jackman JE. Saccharomyces cerevisiae Thg1 uses 5′-pyrophosphate removal to control addition of nucleotides to tRNA(His.). Biochemistry. 2014 Mar 4;53(8):1380-91. PubMed


Swinehart WE, Henderson JC, Jackman JE. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10. RNA. 2013 Aug;19(8):1137-46. PubMed

Rao BS, Mohammad F, Gray MW, Jackman JE. Absence of a universal element for tRNAHis identity in Acanthamoeba castellanii. Nucleic Acids Res. 2013 Feb 1;41(3):1885-94. PubMed


Smith BA, Jackman JE. Kinetic analysis of 3′-5′ nucleotide addition catalyzed by eukaryotic tRNA(His) guanylyltransferase. Biochemistry. 2012 Jan 10;51(1):453-65. PubMed

Jackman JE, Gott JM, Gray MW. Doing it in reverse: 3′-to-5′ polymerization by the Thg1 superfamily. RNA. 2012 May;18(5):886-99. doi: 10.1261/rna.032300.112. PubMed


Rao BS, Maris EL, Jackman JE. tRNA 5′-end repair activities of tRNAHis guanylyltransferase (Thg1)-like proteins from Bacteria and Archaea. Nucleic Acids Res. 2011 Mar;39(5):1833-42. PubMed

Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE. A role for tRNAHis guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5′-tRNA editing. RNA. 2011 Apr;17(4):613-23. PubMed


Hyde SJ, Eckenroth BE, Smith BA, Eberley WA, Heintz NH, Jackman JE, Doublié S. tRNA(His) guanylyltransferase (THG1), a unique 3′-5′ nucleotidyl transferase, shares unexpected structural homology with canonical 5′-3′ DNA polymerases. Proc  Natl Acad Sci U S A. 2010 Nov 23;107(47):20305-10. PubMed

Jackman, J (2010) tRNA biogenesis, Encyclopedia of Life Sciences DOI: 10.1002/9780470015902.a0020894.

Abad MG, Rao BS and Jackman JE (2010) Template-dependent 3′-5′ nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life, Proc Natl Acad Sci U S A 107, 674-679. PubMed



Jackman JE and Phizicky EM (2008) Identification of critical residues for G-1 addition and substrate recognition by tRNAHis guanylyltransferase, Biochemistry 47, 4817-4825. PubMed

Jackman JE, Grayhack EJ, and Phizicky EM (2008) The use of Saccharomyces cerevisiae proteomic libraries to identify RNA-modifying proteins, Methods Mol Biol 488, 383-393. PubMed


Wilkinson ML, Crary SM, Jackman JE, Grayhack EJ, Phizicky EM.(2007) “The 2′-O-methyltransferase responsible for modification of yeast tRNA at position 4.” RNA 13(3):404-13. PubMed


Jackman JE, Phizicky EM. (2006) “tRNAHis guanylyltransferase catalyzes a 3′-5′ polymerization reaction that is distinct from G-1 addition.” Proc Natl Acad Sci U S A. 103(23):8640-5. PubMed

Jackman JE, Phizicky EM. (2006) “tRNAHis guanylyltransferase adds G-1 to the 5′ end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases.” RNA 12(6):1007-14. PubMed


Steiger MA, Jackman JE, Phizicky EM. (2005) “Analysis of 2′-phosphotransferase (Tpt1p) from Saccharomyces cerevisiae: evidence for a conserved two-step reaction mechanism.” RNA 11(1):99-106. PubMed



Gu W, Jackman JE, Lohan AJ, Gray MW, Phizicky EM. (2003) “tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5′ end of tRNAHis.” Genes Dev. 17(23):2889-901. PubMed

Jackman JE, Montange RK, Malik HS, Phizicky EM. (2003) “Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9.” RNA 9(5):574-85. PubMed

McClure CP, Rusche KM, Peariso K, Jackman JE, Fierke CA, Penner-Hahn JE. (2003) “EXAFS studies of the zinc sites of UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC).” J Inorg Biochem. 94(1-2):78-85. PubMed


Pirrung MC, Tumey LN, Raetz CR, JJackman JE, Snehalatha K, McClerren AL, Fierke CA, Gantt SL, Rusche KM. (2002) “Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups.” J Med Chem. 45(19):4359-70. PubMed


Jackman JE, Raetz CR, Fierke CA. (2001) “Site-directed mutagenesis of the bacterial metalloamidase UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC). Identification of the zinc binding site.” Biochemistry 40(2):514-23. PubMed


Jackman JE, Fierke CA, Tumey LN, Pirrung M, Uchiyama T, Tahir SH, Hindsgaul O, Raetz CR. (2000) “Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs.” J Biol Chem. 275(15):11002-9. PubMed