Wu Group

Publications

Patents

Publications

173. Ruiyang Lyu, Ruichen Wan, Curtis E. Moore, and Yiying Wu (2024) Chiral Viologen-Derived Water-Stable Small Band Gap Lead Halides: Synthesis, Characterization, and Optical Properties Inorganic Chemistry  (DOI: 10.1021/acs.inorgchem.3c04413).
172. Pengtao Qiu, Xinwei Chen, Wanyu Zhang, Guoguo Zhang,Yichun Zhang, Zhiwei Lu, Yiying Wu, and Xuenian Chen (2024) A High-Rate and Long-Life Sodium Metal Battery Based on a NaB3H8·xNH3@NaB3H8 Composite Solid-State Electrolyte. Angewandte Chemie. (DOI: 10.1002/anie.202401480).
171. Digen Ruan, Zhuangzhuang Cui, Jiajia Fan, Dazhuang Wang, Yiying Wu, Xiaodi Ren (2024) Recent Advances in Electrolyte Molecular Design for Alkali Metal Batteries. Chemical Science. (DOI: 10.1039/D3SC06650A).
170. Junyang Hu, Huwei Wang, Fu Yuan, Jiali Wang, Haodong Zhang, Rongyi Zhao, Yiying Wu, Feiyu Kang, and Dengyun Zhai. (2024) Deciphering the Formation and Accumulation of Solid-Electrolyte Interphases in Na and K Carbonate-Based Batteries. Nano Letters. (DOI: 10.1021/acs.nanolett.3c04401).
169. Kirk S. Schanze and Yiying Wu. (2023) Editorial Virtual Issue for 15th Anniversary of ACS Applied Materials & Interfaces. ACS Applied Materials & Interfaces (DOI: 10.1021/acsami.3c16615).
168. Songwei Zhang, David Schnable, Jocelyn Elgin, Gaël Ung and Yiying Wu. (2023) Enhanced Circularly Polarized Luminescence Dissymmetry of [Ru(bpy)3]2+ Complexes in a 3D Chiral Framework: A Study of Transparent Thin Films. Chem. Comm. (DOI: 10.1039/D3CC04083F).
167. Jieren Shao, Huiling Ao, Lei Qin, Jocelyn Elgin, Curtis E. Moore, Yehia Khalifa, Songwei Zhang and Yiying Wu. (2023) Design and Synthesis of Cubic K3-2xBaxSbSe4 Solid Electrolytes for K-O2 Batteries. Adv. Mater. (DOI: 10.1002/adma.202306809).
166. Xiaojuan Chen, Yan Meng, Dan Xiao, Yiying Wu and Lei Qin. (2023) Tunning solvation structure in non-flammable, localized high-concentration electrolytes with enhanced stability towards all aluminum substrate-based K batteries. Energy Storage Mater. (DOI: 10.1016/j.ensm.2023.102923).
165. Yiying Wu. (2023) Releasing the Power of Co-activation for Battery Ion Storage. NSR (DOI: 10.1093/nsr/nwad202).
164. Ruiyang Lyu, Zhihao Cui, Jocelyn Elgin, Anne C. Co and Yiying Wu. (2023) Photoelectrochemistry of Methylviologen Lead Iodide: Achieving Stability inside Polar Solvent. J. Phys. Chem. C (DOI: 10.1021/acs.jpcc.3c04054).
163. Lei Qin, Huiling Ao and Yiying Wu. (2023) Feasibility of Achieving Two-Electron K-O2 Batteries. Faraday Discussions (DOI: 10.1039/D3FD00085K).
162. Ruichen Wan, Ruiyang Lyu, Curtis Moore and Yiying Wu. (2023). Towards Understanding the Composition-Structure Relationship of Hybrid Organic Lead Iodide Compounds: Impact from Secondary Structures of Organic Cations. J. Phys. Chem. C (DOI: 10.1021/acs.jpcc.3c01260).
161. Antonio Abate, Yiying Wu, and Masaru Kuno. (2023). New Advances in Metal Halide Perovskites. ACS Energy Lett. (DOI: 10.1021/acsenergylett.3c00593).
160. Dengyun Zhai, Yu Lei, Jiali Wang, Da Han, Fu Yuan, Huwei Wang, Rongyi Zhao, Daqing Huang, Yiying Wu, Biao Zhang and Feiyu Kang. (2023). Achieving Ultralong Cycle Life Graphite Binary Intercalation in Intermediate-Concentration Ether-Based Electrolyte for Potassium-Ion Batteries. SSRN (DOI: 10.2139/ssrn.4051417).
159. Yang Xu, Maria-Magdalena Titirici, Jingwei Chen, Furio Corà, Patrick L Cullen, Jacqueline Sophie Edge, Fan Kun, Ling Fan, Jingyu Feng, Tomooki Hosaka, Junyang Hu, Weiwei Huang, Timothy I Hyde, Sumair Imtiaz, Feiyu Kang, Tadhg Kennedy, Eun Jeong Kim, Shinichi Komaba, Laura Lander, Phuong Nam Le Pham, Pengcheng Liu, Bingan Lu, Fanlu Meng, David Mitlin, Laure Monconduit, Robert G Palgrave, Lei Qin, Kevin Ryan, Gopinathan Sankar, David O Scanlon, Tianyi Shi, Lorenzo Stievano, Henry Tinker, Chengliang Wang, Hang Wang, Huanlei Wang, Yiying Wu, Dengyun Zhai, Zhang Qichun, Min Zhou and Jincheng Zou. (2023). 2023 roadmap for potassium-ion batteries. JPhys Energy (DOI: 10.1088/2515-7655/acbf76).
158. Lei Qin, Luke Schkeryantz, Yiying Wu. (2023). Designing High-Donicity Anions for Rechargeable Potassium Superoxide/Peroxide Batteries. Angewandte Chemie. (DOI: 10.1002/anie.202213996).
157. Chengyu Qiu, Jinyu Jiang, Xin Zhao, Shunqiang Chen, Xiaodi Ren, Yiying Wu. (2022). Hybrid-Solvent Electrolytes for Enhanced Potassium-Oxygen Battery Performance. ACS Appl. Mater. Interfaces (DOI: 10.1021/acsami.2c18875).
156. Jingfeng Zheng, Jocelyn Elgin, Jieren shao, Yiying Wu. (2022). Differentiating Grain and Grain Boundary Ionic Conductivities of Li-ion Antiperovskite Electrolytes. eScience (DOI: 10.1016/j.esci.2022.10.002).
155. Taghi Sahraeian, Jingfeng Zheng, Remy Lalisse, Christopher Hadad, Yiying Wu, Abraham K. Badu-Tawiah. (2022). Resolving Graphite-Electrolyte Interphase in Li-Ion Batteries Using Air-Tight Ambient Mass Spectrometry. Batter. Supercaps (DOI: 10.1002/batt.202200280).
154. Luke Schkeryantz, Phu Nguyen, William McCulloch, Curtis Moore, Kah Chun Lau and Yiying Wu. (2022). K+ Single Cation Ionic Liquids Electrolytes With Low Melting Asymmetric Salt. J. Phys. Chem. C (DOI: 10.1021/acs.jpcc.2c03030).
153. Xiaojuan Chen, Lei Qin, Jiaonan Sun, Songwei Zhang, Dan Xiao, Yiying Wu. (2022). Phase Transfer-Mediated Degradation of Ether-based Localized High-concentration Electrolytes in Alkali Metal Batteries. Angewandte Chemie. (DOI: 10.1002/anie.202207018).
152. Yu Lei, Jiali Wang, Da Han, Fu Yuan, Huwei Wang, Rongyi Zhao, Daqing Huang, Yiying Wu, Biao Zhang, Dengyun Zhai and Feiyu Kang. (2022). Achieving ultralong cycle life graphite binary intercalation in intermediate-concentration ether-based electrolyte for potassium-ion batteries. Carbon (DOI: 10.1016/j.carbon.2022.04.077 ).
151. Yichun Zhang, Pengtao Qiu, Jingfeng Zheng, Xinwei Chen, Xi-Meng Chen, Shouhu Li, Chenchen Ji, Yiying Wu and Xuenian Chen. (2022). KB3H8·NH3B3H7 complex as a potential solid-state electrolyte with excellent stability against K metal. ACS Appl. Mater. Interfaces. (DOI: 10.1021/acsami.2c01586 ).
150. Jieren Shao, Jingfeng Zheng, Lei Qin, Songwei Zhang, Ren Yang, and Yiying Wu. (2022). K3SbS4 as a Potassium Superionic Conductor with Low Activation Energy for K-S Batteries. Angewandte Chemie. (DOI: 10.1002/anie.202200606 ).
149. Junao Chen, Scott Poehler, Masihhur Laskar, Lu Ma, Santhakumar Kannappan, Siddharth Rajan, Yiying Wu and Wu Lu. (2022). Temperature Dependent Carrier Transport in Few-Layered MoS2: from Hopping, to Band Transport. J. Phys. D: Appl. Phys. (DOI: 10.1088/1361-6463/ac507 ).
148. Xingxing Wu, Songwei Zhang, Jiaojiao Gao, Xiaopeng Liu, Qunhui Yuan, Yiying Wu and Wei Gan. (2022). Remedy for Collapse of ZIF Derived Carbon: Micro-Pore Filled Synthesis to Improve ORR Catalytic Property. J. Electrochem. Soc. (DOI: 10.1149/1945-7111/ac4842 ).
147. Yiying Wu, and Omar Farha. (2021). Forum on Emerging Materials for Catalysis and Energy Applications: In Memory of Professor Chia-Kuang (Frank) Tsung. ACS Appl. Mater. Interfaces (DOI: 10.1021/acsami.1c19700 ).
146. Zihan Fang, Luyao Wang, Xijiao Mu, Bin Chen, Qiu Xiong, Wei David Wang, Jiaxin Ding, Peng Gao, Yiying Wu, and Jing Cao. (2021). Grain Boundary Engineering with Self-Assembled Porphyrin Supramolecules for Highly Efficient Large-Area Perovskite Photovoltaics. J. Am. Chem. Soc. (DOI: 10.1021/jacs.1c07518 ).
145. Jingfeng Zheng, Brian Perry, and Yiying Wu. (2021). Antiperovskite Superionic Conductors – A Critical Review. ACS Materials Au.(DOI: 10.1021/acsmaterialsau.1c00026 ).
144. Luke Schkeryantz, Phu Nguyen, William McCulloch, Curtis Moore, Kah Chun Lau, and Yiying Wu. (2021). Unusual Melting Trend in an Alkali Asymmetric Sulfonamide Salt Series: Single Crystal Analysis and Modeling. Inorganic Chemistry. (DOI: 10.1021/acs.inorgchem.1c01752 ).
143. Eric Wolfson, Luke Schkeryantz, Erica Moscarello, Joseph Fernandez, Jonah Paszek, Yiying Wu, Christopher Hadad, and Psaras McGrier. (2021). Alkynyl-Based Covalent Organic Frameworks as High-Performance Anode Materials for Potassium-Ion Batteries. ACS Applied Materials & Interfaces. (DOI: 10.1021/acsami.1c10870 ).
142. Ruiyang Lyu, Curtis Moore, Tianyu Liu, Yongze Yu and Yiying Wu . (2021). Predictive Design Model for Low-Dimensional Organic-Inorganic Halide Perovskites Assisted by Machine Learning. J. Am. Chem. Soc.  (DOI: 10.1021/jacs.1c05441 ).
141. Jingfeng Zheng, Hong Fang, Longlong Fan, Yang Ren, Puru Jena, and Yiying Wu . (2021). Antiperovskite K3OI for K-Ion Solid State Electrolyte. The Journal of Physical Chemistry Letters. (DOI: 10.1021/acs.jpclett.1c01807 )
140. Changxu Ren, Peng Yang, Jiaonan Sun, Eric Bi, Jinyu Gao, Jacob Palmer, Mengqiang Zhu, Yiying Wu, and Jinyong Liu. (2021). A Bioinspired Molybdenum Catalyst for Aqueous Perchlorate Reduction. J. Am. Chem. Soc. (DOI: 10.1021/jacs.1c00595 )
139. Jingfeng Zheng, Luke Schkeryantz, Gerald Gourdin, Lei Qin, and Yiying Wu. (2021). Single Potassium-Ion Conducting Polymer Electrolytes: Preparation, Ionic Conductivities, and Electrochemical Stability. ACS Applied Energy Materials. (DOI: 10.1021/acsaem.1c00483 )
138. Zefeng Yu, Luyao Wang, Xijiao Mu, Chun-Chao Chen, Yiying Wu, Jing Cao, and Yu Tang. (2021). Intramolecular Electric Field Construction in Metal Phthalocyanine as Dopant‐Free Hole Transporting Material for Stable Perovskite Solar Cells with >21 % Efficiency. Angewandte Chemie. (DOI: 10.1002/ange.202016087 )
137. Jie Huang, Jiaonan Sun, Yiying Wu, and Claudia Turro. (2021). Dirhodium(II,II)/NiO Photocathode for Photoelectrocatalytic Hydrogen Evolution with Red Light. J. Am. Chem. Soc. (DOI: 10.1021/jacs.0c12171 )
136. Jiaonan Sun, Songwei Zhang, Luke Schkeryantz, and Yiying Wu. (2020). Photoelectrochemical H2O2 Production from Oxygen Reduction. Clean Energy Materials (Chapter 3, pp 93-109). American Chemical Society. (DOI: 10.1021/bk-2020-1364.ch003 )
135. Luke Schkeryantz, Jingfeng Zheng, William D. McCulloch, Lei Qin, Songwei Zhang, Curtis E. Moore, and Yiying Wu. (2020). Designing Potassium Battery Salts through a Solvent-in-Anion Concept for Concentrated Electrolytes and Mimicking Solvation Structures. Chemistry of Materials. (DOI: 10.1021/acs.chemmater.0c02983 )
134. Guo-Bin Xiao , Lu-Yao Wang , Xi-Jiao Mu , Xiao-Xin Zou , Yi-Ying Wu , and Jing Cao. (2020). Lead and Iodide Fixation by Thiol Copper Porphyrin for Stable and Environmental-friendly Perovskite Solar Cells. CCS Chemistry. (DOI: 10.31635/ccschem.020.202000516 )
133. Muhammad Usman, Maximillian Chibuike, Deepak Patil, Sergei Rigin, Songwei Zhang, Yiying Wu, Jennifer Lindline, and Tatiana V. Timofeeva (2020). Magnetic behaviour of 3D metal−organic frameworks constructed via 1,2,4,5-benzenetetracarboxylate linker and 4f Ce(III) or 3d Fe(III) metal nodes. Inorganic Chemistry Communications. (DOI: 10.1016/j.inoche.2020.108261 )
132. Shougui Ning, Songwei Zhang, Jiaonan Sun, Congping Li, Jingfeng Zheng, Yehia Khalifa, Shouhuan Zhou, Jing Cao, and Yiying Wu. (2020). Ambient Pressure XPS Investigation of Thermally Stable Halide Perovskite Solar Cells via Post-Treatment. ACS Applied Materials & Interfaces. (DOI: 10.1021/acsami.0c12044 )

131. Lei Qin, Songwei Zhang, Jingfeng Zheng, Yu Lei, Dengyun Zhai, and Yiying Wu. (2020). Pursuing Graphite−Based K−Ion O2 Batteries: A Lesson from Li−Ion Batteries. Energy & Environmental Science. (DOI: 10.1039/D0EE01361G )

130. Yu Lei, Yenchi Chen, Huwei Wang, Junyang Hu, Da Han, Jiahui Dong, Wenxin Xu, Xiaojing Li, Yuxin Wang, Yiying Wu, Dengyun Zhai, and Feiyu Kang. (2020). Graphite Intercalation Composite as Anode for Potassium-Ion Oxygen Battery in Concentrated Ether-Based Electrolyte. ACS Appl. Mater. Interfaces. (DOI: 10.1021/acsami.0c06894 )
129. Lei Qin, Luke Schkeryantz, Jingfeng Zheng, Neng Xiao, and Yiying Wu. (2020). Superoxide-Based K–O2 Batteries: Highly Reversible Oxygen Redox Solves Challenges in Air Electrodes. J. Am. Chem. Soc. (DOI: 10.1021/jacs.0c05141 )

128. Hu, Kailong; Qin, Lei; Zhang, Songwei; Zheng, Jingfeng; Sun, Jiaonan; Ito, Yoshikazu; Wu, Yiying. (2020). Building a Reactive Armor Using S-Doped Graphene for Protecting Potassium Metal Anodes from Oxygen Crossover in K−O2 Batteries. ACS Energy Letters. (DOI: 10.1021/acsenergylett.0c00715 )

127. Li, Xiaochen, Chunling Li, Yiying Wu, Jing Cao, and Yu Tang. (2020). A reaction-and-assembly approach using monoamine zinc porphyrin for highly stable large-area perovskite solar cells. Science China Chemistry. (DOI: 10.1007/s11426-020-9710-7)
126. Danielle N. Chirdon, Remy F. Lalisse, Jiaonan Sun, Songwei Zhang, Benjamin R. Garrett, Christopher M. Hadad, and Yiying Wu. (2020). [Mo2O2S8]2− small molecule dimer as a basis for hydrogen evolution reaction (HER) catalyst materials. SN Applied Sciences. (DOI: 10.1007/s42452-020-2706-3)
125. Sun, Jiaonan, and Yiying Wu. (2020). Anthraquinone Redox Relay for Dye‐Sensitized Photoelectrochemical H2O2 Production. Angewandte Chemie. (DOI: 10.1002/anie.202003745)
124. Qin, Lei, Neng Xiao, Songwei Zhang, Xiaojuan Chen, and Yiying Wu. (2020). From K‐O2 to K‐Air Batteries: Realizing Superoxide Batteries on the Basis of Dry Ambient Air. Angewandte Chemie. (DOI: 10.1002/anie.202003481)
123. Wang, Huwei, Junyang Hu, Jiahui Dong, Kah Chun Lau, Lei Qin, Yu Lei, Baohua Li, Dengyun Zhai, Yiying Wu, and Feiyu Kang. (2019). Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries. Advanced Energy Materials. (DOI: 10.1002/aenm.201902697)
122. Wolfson, Eric R., Neng Xiao, Luke Schkeryantz, W. Karl Haug, Yiying Wu, and Psaras L. McGrier. (2019). A dehydrobenzoannulene-based two-dimensional covalent organic framework as an anode material for lithium-ion batteries. Molecular Systems Design & Engineering. (DOI: 10.1039/c9me00104b)
121. Liang, Haixia, Yi-Chen Hu, Yiran Tao, Binghui Wu, Yiying Wu, and Jing Cao. (2019). Existence of Ligands within Sol-gel-derived ZnO Films and Their Effect on Perovskite Solar Cells. ACS applied materials & interfaces. (DOI: 10.1016/j.ensm.2019.07.043 )
120. Qin, Lei, Neng Xiao, Jingfeng Zheng, Yu Lei, Dengyun Zhai, and Yiying Wu. (2019). Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite. Advanced Energy Material. (DOI: 10.1016/j.ensm.2019.07.043 )
119. Lei, Yu, Da Han, Jiahui Dong, Lei Qin, Xiaojing Li, Dengyun Zhai, Baohua Li, Yiying Wu, and Feiyu Kang. (2019). Unveiling the Influence of Electrode/Electrolyte Interface on the Capacity Fading for Typical Graphite-Based Potassium-Ion Batteries. Energy Storage Materials. 24, 319-328 (DOI: 10.1016/j.ensm.2019.07.043 )
118. Qin, L., Lei, Y., Wang, H., Dong, J., Wu, Y., Zhai, D., … & Yang, Q. H. (2019). Capillary Encapsulation of Metallic Potassium in Aligned Carbon Nanotubes for Use as Stable Potassium Metal Anodes. Advanced Energy Materials. Volume9, Issue29.1901427. (DOI: 10.1002/aenm.201901427)
117. Xu, B., Wrede, S., Curtze, A., Tian, L., Pati, P., Kloo, L.,Wu,Y. & Tian, H. (2019). An Indacenodithieno [3, 2‐b] thiophene based Organic Dye for Solid‐state p‐Type Dye‐sensitized Solar Cells. ChemSusChemVolume12, Issue14. Pages 3243-3248 (DOI: 10.1002/cssc.201901102 )
116. Yu, Y., Chien, S. C., Sun, J., Hettiaratchy, E. C., Myers, R. C., Lin, L. C., & Wu, Y. (2019). Excimer-Mediated Intermolecular Charge Transfer in Self-Assembled Donor-Acceptor Dyes on Metal Oxides. J. Am. Chem. Soc. 2019,141,22,8727-8731 (DOI: 10.1021/jacs.9b03729 )

115. Sun, J., Yu, Y., Curtze, A., Liang, X., & Wu, Y. (2019). Dye-Sensitized Photocathodes for Oxygen Reduction: Efficient H2O2 Production and Aprotic Redox Reactions. Chemical ScienceChem. Sci., 2019, 10, 5519–5527 (DOI:10.1039/C9SC01626K )Graphical abstract: Dye-sensitized photocathodes for oxygen reduction: efficient H2O2 production and aprotic redox reactions
114. Xiao, N., Zheng, J., Gourdin, G., Schkeryantz, L., & Wu, Y. (2019). Anchoring an Artificial Protective Layer to Stabilize Potassium Metal Anode in Rechargeable K–O2 Batteries. ACS Appl. Mater. Interfaces201911 (18), pp 16571–16577(DOI: 10.1021/acsami.9b02116)

113. Yu, Y., Click, K. A., Chien, S. C., Sun, J., Curtze, A. E., Lin, L. C., & Wu, Y. (2019). Decoupling pH-Dependence of Flat-Band Potential in Aqueous Dye-Sensitized Electrodes. J. Phys. Chem. C2019123 (14), pp 8681–8687 (DOI: 10.1021/acs.jpcc.9b00710)

Abstract Image

112. Li, C., Yin, J., Chen, R., Lv, X., Feng, X., Wu, Y., & Cao, J. (2019). Monoammonium Porphyrin for Blade-coating Stable Large-area Perovskite Solar Cells with> 18% Efficiency. J. Am. Chem. Soc.2019141 (15), pp 6345–6351 (DOI: 10.1021/jacs.9b01305)
111. Yu, Yongze; Tan, Xuanheng; Ning, Shougui; Wu, Yiying. Machine-Learning for Understanding Compatibility of Organic-Inorganic Hybrid Perovskite with Post-Treating Amines. ACS Energy Lett.20194, pp 397–404(DOI: 10.1021/acsenergylett.8b02451)

110. Gerald Gourdin, Neng Xiao, William D. McCulloch, and Yiying Wu. Use of Polarization Curves and Impedance Analyses to Optimize the ‘Triple-Phase Boundary’ in K–O2 Batteries. ACS Appl. Mater. Interfaces2019, 11 (3), pp 2925–2934 (DOI: 10.1021/acsami.8b16321)

Abstract Image

109. Sichen Gu, Neng Xiao, Feng Wu, Ying Bai, Chuan Wu, and Yiying Wu. (2018). Chemical Synthesis of K2S2 and K2S3 for Probing Electrochemical Mechanisms in K-S Batteries. ACS Energy Lett.20183, pp 2858–2864 (DOI: 10.1021/acsenergylett.8b01719)
108. Neng Xiao, Xiaodi Ren, William D. McCulloch, Gerald Gourdin, and Yiying Wu. (2018). Potassium Superoxide: A Unique Alternative for Metal–Air Batteries. Acc. Chem. Res.201851 (9), pp 2335–2343. (DOI: 10.1021/acs.accounts.8b00332)
107. Cao, J., Li, C., Lv, X., Feng, X., Meng, R., Wu, Y., & Tang, Y. (2018). Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response. J. Am. Chem. Soc.2018140 (37), pp 11577–11580. (DOI: 10.1021/jacs.8b07025)

106. Yongze Yu, Allison Curtze and Yiying Wu. “Interfacial Design in New-Generation Dye-Sensitized Photoelectrochemical Cells for Water Oxidation.” SCIENCE CHINA Chemistry (Volume 61, Issue 10pp 1203–1204. (DOI: 10.1007/s11426-018-9339-3)
105. William McCulloch, Neng Xiao, Gerald Gourdin and Yiying Wu. “Alkali‐Oxygen Batteries Based on Reversible Superoxide Chemistry” Chemistry – A European Journal(2018), Volume24, Issue67 December 3, 2018 Pages 17627-17637. (DOI: 10.1002/chem.201802101)
104. Xiao, Neng, Gerald Gourdin, and Yiying Wu. “Simultaneous Stabilization of Potassium Metal and Superoxide in KO 2 Batteries on the Basis of Electrolyte Reactivity.” Angewandte Chemie (August 20, 2018), Volume57, Issue34, Pages 10864-10867. (DOI: 10.1002/anie.201804115)

103. Wang, Yuji, Xinhang Luo, Ningjiao Zhang, Masihhur R. Laskar, Lu Ma, Yiying Wu, Siddharth Rajan, and Wu Lu. “Low frequency noise in chemical vapor deposited MoS 2.” In Microwave Measurement Conference, 2013 82nd ARFTG, pp. 1-3. IEEE, 2013. (DOI:10.1109/ARFTG-2.2013.6737358)
102. Lei, Yu, Lei Qin, Ruliang Liu, Kah Chun Lau, Yiying Wu, Dengyun Zhai, Baohua Li, and Feiyu Kang.“Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries”, ACS Appl. Energy Mater.20181 (5), pp 1828–1833  (DOI: 10.1021/acsaem.8b00214)
101. Xiao, Neng, Ryan T. Rooney, Andrew A. Gewirth, and Yiying Wu, “The Long-Term Stability of KO2 in K-O2 Batteries”, Angewandte Chemie 130.5 (2018): 1241-1245. (DOI: 10.1002/anie.201710454)
100. Yongze Yu, Kevin A. Click, Shane M. Polen, Mingfu He, Christopher M. Hadad, and Yiying Wu, “Electron Transfer Kinetics of a Series of Bilayer Triphenylamine-Oligothiophene-Perylenemonoimide Sensitizers for Dye-Sensitized NiO.”, J. Phys. Chem. C 121.38 (2017): 20720-20728. (DOI: 10.1021/acs.jpcc.7b07859)
99. Johnson, Jared M., Choong Hee Lee, Siddharth Rajan, William McCulloch, Yiying Wu, and Jinwoo Hwang, “Exploring Thermal Properties of MoS2 Using In Situ Quantitative STEM.”, Microscopy and Microanalysis 22, no. S3 (2016): 912-913. (DOI: https://doi.org/10.1017/S1431927616005407)
98. Danielle N. Chirdon and Yiying Wu, “Hydrogen evolution: Not living on the edge”, Nature Energy 2.9 (2017): 17132. (DOI: 10.1038/nenergy.2017.132)
97. Xiao, Neng, William D. McCulloch, and Yiying Wu, “Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries”, J. Am. Chem. Soc.2017, 139 (28), pp 9475–9478 (DOI: 10.1021/jacs.7b04945)

96. Thomas I. Draskovic and Yiying Wu, “Electrocatalytic Properties of Cuprous Delafossite Oxides for Alkaline Oxygen Reduction Reaction”, ChemCatChem, Volume 9, Issue 20, October 23, 2017(DOI: 10.1002/cctc.201700712)
95. Click, K.A., Schockman, B.M., Dilenschneider, J.T., McCulloch, W.D., Garrett, B.R., Yu, Y., He, M., Curtze, A.E. and Wu, Y., “Bilayer Dye Protected Aqueous Photocathodes for Tandem Dye-Sensitized Solar Cells”, J. Phys. Chem. C121, no. 16 (2017): 8787-8795. (DOI: 10.1021/acs.jpcc.7b01911)
94. Benjamin R. Garrett, Shane M. Polen, Maneesha Pimplikar, Christopher M. Hadad, and Yiying Wu, “Anion-Redox Mechanism of MoO(S2)2(2,2′-bipyridine) for Electrocatalytic Hydrogen Production “, J. Am. Chem. Soc., no. 12 (2017): 4342-4345. (DOI: 10.1021/jacs.7b01350)

93.
Xiaodi Ren, Qiang Zhao, William D. McCulloch, and Yiying Wu, “MoS2 as a long-life host material for potassium ion intercalation”,  Nano Research 10.4 (2017): 1313-1321. (DOI: http://rdcu.be/pqHC)
92. Yiying Wu and Jun Lu, “Preface: Forum on New Materials and Approaches for Beyond Li-ion Batteries”,  ACS Applied Materials & Interfaces,  2017, 9 (5), pp 4281–4281. (DOI: 10.1021/acsami.7b01033)
91. Choong Hee Lee, Edwin W. Lee II, William McCulloch, Zane Jamal-Eddine, Sriram Krishnamoorthy, Michael J Newburger, Roland K. Kawakami, Yiying Wu and Siddharth Rajan, “A self-limiting layer-by-layer etching technique for 2H-MoS2″, Applied Physics Express 10.3 (2017): 035201. (http://iopscience.iop.org/article/10.7567/APEX.10.035201/meta)
90. Mingfu He, Kah Chun Lau, Xiaodi Ren, Neng Xiao, William D. McCulloch, Dr. Larry A. Curtiss, Yiying Wu, “Concentrated Electrolyte for the Sodium–Oxygen Battery: Solvation Structure and Improved Cycle Life”, Angewandte Chemie 128.49 (2016): 15536-15540. (DOI:10.1002/ange.201608607) VIP paper, featured in phys.org

Mingfu's TOC

89. Krishnamoorthy, Sriram, I. I. Lee, W. Edwin, Choong Hee Lee, Yuewei Zhang, William D. McCulloch, Jared M. Johnson, Jinwoo Hwang, Yiying Wu, and Siddharth Rajan, “High current density 2D/3D MoS2/GaN Esaki tunnel diodes.” Applied Physics Letters109.18 (2016): 183505. (DOI:arXiv:1606.00509)
88. Garrett, Benjamin R., Kevin A. Click, Christopher B. Durr, Christopher M. Hadad, and Yiying Wu, “[MoO (S2) 2L] 1-(L= picolinate or pyrimidine-2-carboxylate) Complexes as MoSx Inspired Electrocatalysts for Hydrogen Production in Aqueous Solution”, Journal of the American Chemical Society 138.41 (2016): 13726-13731.(DOI:10.1021/jacs.6b08652)

87. Xiaodi Ren, Mingfu He, Neng Xiao, William D McCulloch, Yiying Wu, “Greatly Enhanced Anode Stability in K-Oxygen Batteries with an In-Situ Formed Solvent- and Oxygen-Impermeable Protection Layer”, Advanced Energy Materials 7.1 (2017).(DOI:10.1002/aenm.201601080)

86. William D. McCulloch, Mingzhe Yu, and Yiying Wu, “pH-Tuning a Solar Redox Flow Battery for Integrated Energy Conversion and Storage”, ACS Energy Letters 1.3 (2016): 578-582. (DOI:10.1021/acsenergylett.6b00296)

pH-Tuning a Solar Redox Flow Battery for Integrated Energy Conversion and Storage

pH-Tuning a Solar Redox Flow Battery for Integrated Energy Conversion and Storage

85. Neng XiaoXiaodi RenMingfu HeWilliam D. McCulloch, and Yiying Wu, “Probing Mechanisms for Inverse Correlation between Rate Performance and Capacity in K–O2 Batteries“, ACS Applied Materials & Interfaces, 2017, 9 (5), pp 4301–4308. (DOI:10.1021/acsami.6b06280)

Abstract Image

84. Benjamin R. Garrett, Shane M. Polen, Kevin A. Click, Mingfu He, Zhongjie Huang, Christopher M. Hadad, and Yiying Wu*, “Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production”, Inorg. Chem.2016, 55, 3960−3966 (DOI: 10.1021/acs.inorgchem.6b00206)

Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production

Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production

83. Kevin A. Click, Damian R. Beauchamp, Zhongjie Huang, Weilin Chen, and Yiying Wu, “Membrane-Inspired Acidically Stable Dye-Sensitized Photocathode for Solar Fuel Production”, J. Am. Chem. Soc.2016138 (4), pp 1174–1179 (DOI: 10.1021/jacs.5b07723)

Membrane-Inspired Acidically Stable Dye-Sensitized Photocathode for Solar Fuel Production

82. Mingzhe Yu, William David McCulloch, Zhongjie Huang, Brittany B Trang, Jun Lu, Khalil Amine and Yiying Wu, “Solar-Powered Electrochemical Energy Storage: an Alternative to Solar Fuels”, J. Mater. Chem. A, 2016, 4, 2766-2782  (DOI: 10.1039/C5TA06950E)

Solar-powered electrochemical energy storage: an alternative to solar fuels

81. William D. McCulloch, Xiaodi Ren, Mingzhe Yu, Zhongjie Huang, and Yiying Wu, “A Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode”, ACS Applied Materials & Interfaces. 7, no. 47 (2015): 26158-26166. (DOI: 10.1021/acsami.5b08037)

Abstract Image

A Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode

80. Lee, Choong Hee, William McCulloch, Edwin W. Lee II, Lu Ma, Sriram Krishnamoorthy, Jinwoo Hwang, Yiying Wu, and Siddharth Rajan., “Transferred large area single crystal MoS2 field effect transistors”, Applied Physics Letters , 107, no. 19 (2015): 193503. (DOI: 10.1063/1.4930234)
79. Huang, Z., Luo, W., Ma, L., Yu, M., Ren, X., He, M., Polen, S., Click, K., Garrett, B., Lu, J., Amine, K., Hadad, C., Chen, W., Asthagiri, A. and Wu, Y. , “Dimeric [Mo2S12]2− Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis”, Angew. Chem. 127, no. 50 (2015): 15396-15400. (DOI: 10.1002/ange.201507529)

Dimeric [Mo2S12]2− Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis

Dimeric [Mo2S12]2− Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis

78. Lee, I. I., W. Edwin, Choong Hee Lee, Pran K. Paul, Lu Ma, William D. McCulloch, Sriram Krishnamoorthy, Yiying Wu, Aaron Arehart, and Siddharth Rajan, “Layer-Transferred MoS2/GaN PN Diodes”, Appl. Phys. Lett. , 107, 103505 (2015) (DOI: 10.1063/1.4930234)
77. B.R. Garrett, A. Awad, M. He, K.A. Click, C.B. Durr, J.C. Gallucci, C.M. Hadad, Y. Wu “Dimeric FeFe-Hydrogenase Mimics Bearing Carboxylic Acids: Synthesis and Electrochemical Investigation”, Polyhedron, 103 (2016): 21-27. (DOI: 10.1016/j.poly.2015.08.019)

Dimeric FeFe-Hydrogenase Mimics Bearing Carboxylic Acids: Synthesis and Electrochemical Investigation

Dimeric FeFe-Hydrogenase Mimics Bearing Carboxylic Acids: Synthesis and Electrochemical Investigation

76. R. Seshadri, K. Persson, P. Kamat, Y. Wu, “Recent advances in Battery Science and Technology”, Chem. Mater. 27, no. 13 (2015): 4505-4506. (editorial) (DOI: 10.1021/acs.chemmater.5b02350)
75. M. Yu, W. D. McCulloch, D. R. Beauchamp, Z. Huang, X. Ren, Y. Wu, “Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy”, J. Am. Chem. Soc.137, no. 26 (2015): 8332-8335. (DOI: 10.1021/jacs.5b03626)

Abstract Image

Aqueous Lithium–Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy

74. Draskovic, Thomas; Yu, Mingzhe; Wu, Yiying. “2H-CuScO2 Prepared by Low Temperature Hydrothermal Methods and Post-Annealing Effects on Optical and Photoelectrochemical Properties”, Inorganic chemistry 54.11 (2015): 5519-5526. (DOI: 10.1021/acs.inorgchem.5b00575).

Abstract Image

2H-CuScO2 Prepared by Low-Temperature Hydrothermal Methods and Post-Annealing Effects on Optical and Photoelectrochemical Properties

73.

X. Bi, X. Ren, Z. Huang, M Yu, E. Kreidler and Y. Wu, “Investigating dendrites and side reactions in sodium–oxygen batteries for improved cycle lives”, Chem Comm, 51, no. 36 (2015): 7665-7668. (DOI: 10.1039/C5CC00825E)

Investigating dendrites and side reactions in sodium–oxygen batteries for improved cycle lives

72. Z. Huang, M. He, M. Yu, K. Click, D. Beauchamp, Y. Wu, “Dye-Controlled Interfacial Electron Transfer for High-Current Indium Tin Oxide Photocathodes”, Angewandte Chemie International Edition 54.23 (2015): 6857-6861. (DOI: 10.1002/anie.201500274).

Dye-Controlled Interfacial Electron Transfer for High-Current Indium Tin Oxide Photocathodes

Dye-Controlled Interfacial Electron Transfer for High-Current Indium Tin Oxide Photocathodes

71. Edwin W. Lee II, Lu Ma, Digbijoy N. Nath, Choong Hee Lee, Aaron Arehart, Yiying Wu and Siddharth Rajan, “Growth and electrical characterization of two-dimensional layered MoS2/SiC heterojunctions”, Applied Physics Letters, 2014, 105, 203504. (DOI: 10.1063/1.4901048)
70.

Kevin A. Click, Damian R. Beauchamp, Benjamin R. Garrett, Zhongjie Huang, Christopher M. Hadad and Yiying Wu, “Double-Acceptor as a Superior Organic Dye Design for p-Type DSSCs: High Photocurrents and Observed Light Soaking Effect”, Physical Chemistry Chemical Physics, 16, no. 47 (2014): 26103-26111. (DOI: 10.1039/C4CP04010D)

Double-Acceptor as a Superior Organic Dye Design for p-Type DSSCs: High Photocurrents and Observed Light Soaking Effect

69.

Ren, Xiaodi; Lau, Kah Chun; Yu, Mingzhe; Bi, Xuanxuan; Kreidler, Eric; Curtiss, Larry; Wu, Yiying, “Understanding side reactions in K-O2 batteries for improved cycle life”, ACS Applied Materials & Interfaces, 6, no. 21 (2014): 19299-19307. (DOI: 10.1021/am505351s)

Abstract Image

Understanding side reactions in K-O2 batteries for improved cycle life

68.

M. Yu, X. Ren, L. Ma, Y. Wu, “Integrating a Redox-Coupled Dye-Sensitized Photoelectrode into a Lithium-Oxygen Battery for Photo-Assisted Charging”, Nature Communications, 5:5111, 2014. (DOI: 10.1038/ncomms6111)

Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging

Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging

67. L. Ma, D. N. Nath, E. W. Lee II, C. H. Lee, M. Yu, A. Arehart, S. Rajan, Y. Wu, “Epitaxial Growth of Large Area Single-Crystalline Few-Layer MoS2”, Applied Physics Letters, 2014,105, 072105. (DOI: 10.1063/1.4893143)
66. Y. Wu, B. C. Melot, “Preface: Forum on New Materials and Approaches for Electrochemical Storage”, ACS Applied Materials & Interfaces, 2014, 6 (14), pp 10831–10831 (DOI: 10.1021/am504265c).
65.

M. Yu, T. Draskovic, Y. Wu, “Understanding the Crystallization Mechanism of Delafossite CuGaO2 for Controlled Hydrothermal Synthesis of Nanoparticles and Nanoplates”, Inorganic Chemistry, 2014, 53 (11), pp 5845–5851 (DOI: 10.1021/ic500747x)

Understanding the Crystallization Mechanism of Delafossite CuGaO2 for Controlled Hydrothermal Synthesis of Nanoparticles and Nanoplates

64.

 M. He, Z. Ji, Z. Huang, Y. Wu, “Molecular Orbital Engineering of a Panchromatic Cyclometalated Ru(II) Dye for p-Type Dye-Sensitized Solar Cells”, J. Phys. Chem. C. (invited article in honor of the Michael Graetzel Festschrift), 2014, 118 (30), pp 16518–16525. (DOI: 10.1021/jp4117694)

Abstract Image

Molecular Orbital Engineering of a Panchromatic Cyclometalated Ru(II) Dye for p-Type Dye-Sensitized Solar Cells

63.

M.R. Laskar, D. N. Nath, L. Ma, E.W. Lee II, C.H. Lee, T. Kent, Z. Yang, R. Mishra, M.A. Roldan, J.-C. Idrobo, S.T. Pantelides, S.J. Pennycook,  R. Myers, Y. Wu and S. Rajan, “p-type doping in CVD grown MoS2 using Nb”, Appl. Phys. Lett., 2014, 104, 092104 (DOI: 10.1063/1.4867197)

62.

 M. Yu, T. Draskovic, Y. Wu “Cu(I)-based Delafossite Compounds as Photocathodes in p-type Dye-Sensitized Solar Cells”, Physical Chemistry Chemical Physics (Perspective) 2014, 16, 5026-5033. (DOI: 10.1039/C3CP55457K)

Cu(I)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells

61.

 J. Ahmed, C.K. Blakely, J. Prakash, S.R. Bruno, M. Yu, Y. Wu, V.V. Poltavets “Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cell applications”, Journal of Alloys and Compounds, 2014, 591, pp 275–279. (DOI: 10.1016/j.jallcom.2013.12.199)

Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications

60.

 Z. Ji, Y. Wu “Photoinduced Electron Transfer Dynamics of Cyclometalated Ruthenium(II)-Naphthalenediimide Dyad at NiO Photocathode”, J. Phys. Chem. C 2013, 117 (36), pp 18315–18324. (DOI: 10.1021/jp405659m)

Abstract Image

Photoinduced Electron Transfer Dynamics of Cyclometalated Ruthenium (II)–Naphthalenediimide Dyad at NiO Photocathode

59.

 Z. Ji, G. Natu, Y. Wu “Cyclometalated ruthenium sensitizers bearing triphenylamino group for p-type NiO dye-sensitized solar cells”, ACS Applied Materials and Interfaces, 2013, 5(17), pp 8641–8648. (DOI:10.1021/am402263q)

Abstract Image

Cyclometalated Ruthenium Sensitizers Bearing a Triphenylamino Group for p-Type NiO Dye-Sensitized Solar Cells

58.

 Z. Ji, M. He, Z. Huang, U. Ozkan, Y. Wu “Photostable p-Type Dye-Sensitized Photoelectrochemical Cells for Water Reduction”, J. Am. Chem. Soc.2013, 135 (32), pp 11696–11699. (DOI: 10.1021/ja404525e)

Abstract Image

Photostable p-Type Dye-Sensitized Photoelectrochemical Cells for Water Reduction

57.

 M. R. Laskar, Lu Ma, et al. “Large area single crystal (0001) oriented MoS2 thin films”, Appl. Phys. Lett2013, 102, 252108. (DOI: 10.1063/1.4811410)

56.

 X. Ren, Y. Wu*, “A low-overpotential potassium-oxygen battery based on potassium superoxide”, J. Am. Chem. Soc. 2013, 135 (8), pp 2923–2926 (DOI: 10.1021/ja312059q)

Abstract Image

A Low-Overpotential Potassium–Oxygen Battery Based on Potassium Superoxide

55.

 Z. Huang, G. Natu, Z. Ji, M. He, M. Yu and Y. Wu*, “Probing the Low Fill Factor of NiO p-Type Dye-Sensitized Solar Cells”, J. Phys. Chem. C. 2012, 116, pp 26239-26246 (DOI: 10.1021/jp310053f).

Abstract Image

Probing the Low Fill Factor of NiO p-Type Dye-Sensitized Solar Cells

54.

G. Natu, P. Hasin, Z. Huang, Z. Ji, M. He and Y. Wu*, “Valence Band-edge engineering of nickel oxide nanoparticles via cobalt doping for application in p-type dye-sensitized solar cells”, ACS Applied Materials and Interfaces, 2012, 4 (11), pp 5922–5929 (DOI: 10.1021/am301565j).

Valence Band-Edge Engineering of Nickel Oxide Nanoparticles via Cobalt Doping for Application in p-Type Dye-Sensitized Solar Cells

53.

Z. Ji, G. Natu, Z. Huang, O. Kokhan, X. Zhang*, Y. Wu*; “Synthesis, Photophysics and Photovoltaic Studies of Ruthenium Cyclometalated Complexes as Sensitizers for P-Type NiO Dye-Sensitized Solar Cells”, J. Phys. Chem. C. 2012 116 (32), pp 16854–16863 (DOI: 10.1021/jp303909x)

Abstract Image

Synthesis, Photophysics, and Photovoltaic Studies of Ruthenium Cyclometalated Complexes as Sensitizers for p-Type NiO Dye-Sensitized Solar Cells

52.

M. Yu, G. Natu, Z Ji, Y. Wu*, “p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO2 Nanoplates with Saturation Photovoltages Exceeding 460 mV” J. Phys. Chem. Lett., 2012, 3, pp 1074–1078. (DOI: 10.1021/jz3003603)

Abstract Image

p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO2 Nanoplates with Saturation Photovoltages Exceeding 460 mV

51.

P. Hasin, Y. Wu*, “Sonochemical Synthesis of Copper Hydride (CuH)”, Chem. Comm.2012, 48, pp 1302-1304 (DOI: 10.1039/C2CC15741A).

Sonochemical synthesis of copper hydride (CuH)

50.

 G. Natu, Z. Huang, Z. Ji, Y. Wu*, “The Effect of an Atomically Deposited Layer of Alumina on NiO in P-type Dye-Sensitized Solar Cells”, Langmuir, 2012, 28 (1), pp 950–956. (DOI: 10.1021/la203534s).

Abstract Image

The Effect of an Atomically Deposited Layer of Alumina on NiO in P-type Dye-Sensitized Solar Cells

49.

Z. Huang, G. Natu, Z., Ji, P. Hasin, Y. Wu* “p-Type Dye-Sensitized NiO Solar Cells: A Study by Electrochemical Impedance Spectroscopy”, J. Physical Chemistry C, 2011, 115 (50), pp 25109–25114. (DOI: 10.1021/jp205306g).

p-Type Dye-Sensitized NiO Solar Cells: A Study by Electrochemical Impedance Spectroscopy

48.

Z. Ji, G. Natu, Z. Huang, Y. Wu*, “Linker effect in organic donor-acceptor dyes for p-type NiO dye sensitized solar cells”, Energy & Environmental Science, 2011, 4, pp2818-2821. (DOI: 10.1039/C1EE01527C)

Linker effect in organic donor–acceptor dyes for p-type NiO dye sensitized solar cells

47.

Y. Wu (2011). “Nanocrystalline Oxide Semiconductors for Dye-Sensitized Solar Cells.” In Peidong Yang (Eds.), The Chemistry of Nanostructured Materials (pgs. 127-173). World Scientific Publishing Co.

46.

D. Wang, Y. Li, P. Hasin, Y. Wu*. “Preparation, Characterization, and electrocatalytical performance of graphene/methylene blue thin films”, Nano Research, 2011, 4(1), 124-130 (DOI: 10.1007/s12274-010-0069-6).

45.

P. Hasing, M. A. Alpuche-Avilesp, Y. Wu*.“Electrocatalytic activity of graphene multilayers towards I/I3: effect of preparation conditions and polyelectrolyte modification” J. Physical Chemistry C 114(37), 15857 (2010).

44.

G. Natu, Y. Wu*. “Photoelectrochemical Study of the Ilmenite Polymorph of CdSnO3 and its Photoanodic Application in Dye-Sensitized Solar Cells” J. Physical Chemistry C, 114 (14), 6802 (2010).

43.

Y. Li, P. Hasin, Y. Wu*. “NixCo3-xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution”, Advanced Materials, 2010, 22 (17), 1926 (DOI: 10.1002/adma.200903896).

42.

Y. Li, Y. Wu*. “Critical Role of Screw Dislocations in the Growth of Co(OH)2 Nanowires as Intermediates for Co3O4 Nanowires Growth”, Chemistry of Materials, 2010, 22(19) 5537-5542 (DOI: 10.1021/cm101546t).

41.

J. Baxter, G. Chen, D. Danielson, M. S. Dresselhauss, A. G. Fedorov*, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen<, A. Manthiram, A. Nozik, D. Rolison, T. Sands, L. Shi, D. Sholl, Y. Wu. “Nanoscale Design to Enable the Revolution in Renewable Energy”, Energy & Environmental Science.2 (6), 559 (2009)

40.

Y. Li, Y. Wu*. “Coassembly of Graphene Oxide and Nanowires for Large-Area Nanowire Alignment”, J. Am. Chem. Soc. 131(16) 5851-5857 (2009).

39.

M. A. Alpuche-Aviles, Y. Wu*. “Photoelectrochemical Study of the Band structure of Zn2SnO4 Prepared by the Hydrothermal method”, J. Am. Chem. Soc.131(9) 3216-3224 (2009).

38.

P. Hasing, M. A. Alpuche-Avilesp, Y. Lig, Y. Wu*. “Mesoporous Nb-doped TiO2 as Pt Support for Counter Electrode in Dye-Sensitized Solar Cells”, J. Phys. Chem. C.113(17) 7456-7460 (2009).

37.

Y. Li, Y. Wu*. “Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets”, Nano Research, 2(1): 54-60 (2009).

36.

Y. Li, B. Tan, Y. Wu*. “Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capacity”, Nano Letters, 8: 265-270 (2008).

35.

Y. Li, B. Tan, Y. Wu*. “Ammonia-Evaporation-Induced Synthetic Method for Metal (Cu, Zn, Cd, Ni) Hydroxide/Oxide Nanostructures”, Chem. Mater.20: 567-576 (2008).

34.

B. Tan, E. Toman, Y. Li, Y. Wu*, “Zinc Stannate (Zn2SnO4) Dye-Sensitized Solar Cells”, J. Am. Chem. Soc. 129(14), 4162 (2007).

33.

Y. Li, B. Tan, Y. Wu*, “Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays”, J. Am. Chem. Soc. 128(44), 14258-14259 ( 2006) (highlighted by Nature Nanotech. (Oct. 2006)).

32.

 B. Tan, Y. Wu*, “Dye-Sensitized Solar Cells Based on Anatase TiONanoparticle/Nanowire Composites”, J. Phys. Chem. B110: 15932-15938 (2006).

Postdoctoral work

31.

A. Thomas, M. Schierhorn, Y. Wu, G. Stucky, “Assembly of Spherical Micelles in 2D Physical Confinements and Their Replication into Mesoporous Silica Nanorods”, J. Mater. Chem. 17: 4558-4562 (2007).

30.

M. Moskovits, D.H. Jeong, T. Livneh, Y.Y. Wu, G.D. Stucky, “Engineering nanostructures for single-molecule surface-enhanced Raman spectroscopy”, Isreal Journal. of Chemistry, 46: 283-291 (2006).

29.

Y. Zhang , J. Christofferson, A. Shakouri, D. Li, A. Majumdar, Y. Wu, R. Fan, P. Yang, “Characterization of heat transfer along Si Nanowire”, IEEE Transactions on Nanotechnology, 5, 67 (2006).

28.

J. F. Wang, C.-K. Tsung, R. C. Hayward, Y. Wu, G. D. Stucky. “Single-crystal mesoporous silica ribbons”, Angew. Chem. Int. Ed.44: 332-336 (2005).

27.

Y. Wu, G. S. Cheng, K. Katsov, S. W. Sides, J. F. Wang, J. Tang, G. H. Fredrickson, M. Moskovits, G. D. Stucky, “Composite mesostructures by nano-confinement”, Nature Materials3, 816-822 (2004). (Highlighted by Science 306, 943 (2004)).

26.

Y. Wu, T. Livneh, Y. X. Zhang, G. S. Cheng, J. F. Wang, J. Tang, M. Moskovits, G. D. Stucky, “Templated synthesis of highly ordered mesostructured nanowires and nanowire array”, Nano Letters 4, 2337 (2004) (cover story).

25.

J. F. Wang, C.-K. Tsung, W. B. Hong, Y. Wu, J. Tang, G. D. Stucky, “Synthesis of mesoporous silica nanofibers with controlled pore architectures”, Chem. Mater. 16, 5169 (2004).

24.

J. Tang, Y. Wu, E. W. McFarland, G. D. Stucky, “Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films”, Chem. Comm. (14), 1670-1671 (2004).

Graduate work

23.

A. R. Abramson, W. C. Kim, S. T. Huxtable, H. Q. Yan, Y. Wu, A. Majumdar, C.-K. Tien, P. D. Yang, “Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device”, Journal of Microelectromechanical Systems13(3),  505 (2004).).

22.

D. Y. Li, Y. Wu, R. Fan, P. D. Yang, A. Majumdar, “Thermal conductivity of Si/SiGe longitudinal heterostructure nanowires” Appl. Phys. Lett.83(15), 3186 (2003).

21.

D. Y. Li, Y. Wu, P. Kim, L. Shi, N. Mingo, Y. Liu, P. D. Yang, A. Majumdar, “Thermal conductivity of individual silicon nanowires” Appl Phys. Lett.83(14), 2934 (2003).

20.

R. Fan, Y. Wu, D. Y. Li, M. Yue, A. Majundar, P. D. Yang, “Fabrication of Silica Nanotube Arrays from Vertical Silicon Nanowire Templates”, J. Am. Chem. Soc. 125(18), 5254-5255 (2003).

19.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Yan, “One-dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater15(5), 353-389 (2003).

18.

Y. Wu, R. Fan, P. D. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires”, Nano Letters, 2, 83 (2002).

17.

Y. Wu, H. Yan, M. Huang, B. Messer, J. Song, P. D. Yang, “Inoragnic semiconductor nanowires: rational growth, assemblies and novel properties”, Chemistry, Euro. J., 8, 1260 (2002).

16.

Y. Wu, H. Yan, P. D. Yang, “Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics”, Topics in Catalysis, 19(2), 197 (2002).

15.

B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. D. Yang, Y. N. Xia, “Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature”, Adv. Func. Mater.12(10), 679-686 (2002).

14.

P. D. Yang, Y. Wu, R. Fan, “Inorganic semiconductor nanowires”, International Journal of Nanoscience, 1(1), 1-39 (2002).

13.

B. Zheng, Y. Wu, P. D. Yang, J. Liu, “Synthesis of ultra-long and highly-oriented silicon oxide nanowires from alloy liquid”, Adv. Mater.14, 122 (2002).

12.

Y. Wu, P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth”, J. Am. Chem. Soc.123, 3165 (2001).

11.

Y. Wu, B. Messer, P. D. Yang, “Superconducting MgB2 nanowires”, Adv. Mater.13, 1487 (2001).

10.

Y. Wu, P. D. Yang, “Melting and welding semiconductor nanowires in nanotubes”, Adv. Mater.13, 520 (2001).

9.

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292, 1897 (2001).

8.

M. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, “Catalytic growth of zinc oxide nanowires through vapor transport”, Adv. Mater.13(2), 113 (2001).

7.

J. Song, Y. Wu, B. Messer, H. Kind, P. D. Yang, “Metal nanowire formation using Mo3Se3 as reducing and sacrificing templates”, J. Am. Chem. Soc.123, 10397 (2001).

6.

B. Gates, Y. Wu, Y. Yin, P. D. Yang, Y. D. Xia, “Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se”, J. Am. Chem. Soc.123, 11500 (2001).

5.

J. Song, B. Messer, Y. Wu, H. Kind P. D. Yang, “MMo3Se3 (M=Li+, Na+, Rb+, Cs+, NMe4+) nanowire formation via cation exchange in organic solution”, J. Am. Chem. Soc.123, 9714 (2001).

4.

Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, S. Fan, D. Yu, P. D. Yang, “Bismuth nanotubes: a rational low-temperature synthetic route”, J. Am. Chem. Soc.123, 9904 (2001).

3.

Y. Wu, P. D. Yang, “Germanium/carbon core-sheath nanostructures”, Appl. Phys. Lett.77, 43 (2000).

2.

Y. Wu, P. D. Yang, “Germanium nanowire growth via simple vapor transport”, Chem. Mater12, 605 (2000).

1.

B. Messer, J. H. Song, M. Huang, Y. Wu, F. Kim, P. Yang, “Surfactant induced mesoscopic assemblies of inorganic molecular chains”, Adv. Mater.12, 1526 (2000).