Publications
OSU publications
25 “Thermodynamics of Proton-Coupled Electron Transfer at Tricopper μ-Oxo/Hydroxo/Aqua Complexes” Mondol, S., Zhang, W., Zhang S.* J. Am. Chem. Soc. 2024, 146,15036–15044. Link
24 “Catalytically Relevant Organocopper(III) Complexes Formed through Aryl-Radical-Enabled Oxidative Addition” Yan, W., Poore, A. T., Yin, L., Carter, S., Ho, Y., Wang, C., Yachuw, S. C., Cheng, Y., Krause, J. A., Cheng, M., Zhang, S. Tian,S.,*, and Liu, W.* J. Am. Chem. Soc. 2024, 145, ASAP. Link
23 “Aqueous Zn-Tetrazine Batteries with Cooperative Zn2+/H+ Insertion” Walter, C., Yaseen, M., Park, J., Tuttle, M. R., Taylor, S., and Zhang, S.* ACS. Appl. Mater. Interfaces. 2024, 16, 5937–5942 Link
22 “C–N Bond Formation at Discrete Cu(III)–Aryl Complexes” Reese, M. S., Bonanno M. G., Bower, J. K., Moore C. E., and Zhang S.* J. Am. Chem. Soc. 2023, 145, 26810–26816. Link
21 “Copper–Carbon Homolysis Competes with Reductive Elimination in Well-Defined Copper(III) Complexes” Yan, W., Carter, S., Hsieh, C., Krause, J., Cheng, M., Zhang, S.,* Liu, W.* J. Am. Chem. Soc. 2023, 145, 26152–26159. Link
20 “Nitrite Formation at a Diiron Dinitrosyl Complex” Poptic, A. L. Klinger, J. J., Carter, S. L., Moore, C. E., and Zhang, S.* J. Am. Chem. Soc. 2023, 145, 22993–22999. Link
19 “Two-State Hydrogen Atom Transfer Reactivity of Unsymmetric [Cu2(O)(NO)]2+ Complexes” Carter, S. L., Tao, W., Majumder, R., Sokolov, A. Yu.,* and Zhang, S.* J. Am. Chem. Soc. 2023, 145, 17779–17785. Link
18 “Site-Differentiated Mn(II)Fe(II) Complex Reproducing the Selective Assembly of Biological Heterobimetallic Mn/Fe Cofactors” Poptic, A. L. Chen, Y., Chang, T,. Chen, Y., Moore, C. E., and Zhang, S.* J. Am. Chem. Soc. 2023, 145, 3491–3498. Link
17 “Predicting the Solubility of Organic Energy Storage Materials Based on Functional Group Identity and Substitution Pattern” Tuttle, M. R., Brackman, E. M., Sorourifar, F., Paulson, J. A.*, and Zhang, S.* J. Phys. Chem. Lett. 2023, 14, 1318–1325. Link
16 “Gaseous Nitrogen Oxides Catholyte for Rechargeable Redox Flow Battery” Zhang, W., Yang, X., and Zhang S.* Angew. Chem. Int. Ed. 2023, 62, e202216889. Link
15 “C(sp3)-H Cyanation by a Formal Copper(III) Cyanide Complex” Bower, J. K.,‡ Reese, M.,‡, Mazina, I. M., Zarnitsa, L. M., Cypcar, A. D., Moore, C. E., Sokolov, A. Y.,* and Zhang S.* Chem. Sci. 2023, 14, 1301-1307. Link
13 “Reductive NO Coupling at Dicopper Center via a [Cu2(NO)2]2+ Diamond-Core Intermediate” Tao, W., Carter, S., Trevino, R., Zhang W., Shafaat, H. S.*, and Zhang S.* J. Am. Chem. Soc. 2022, 144, 22633–22640. Link
12 “Controlling the direction of S-nitrosation vs. denitrosation: reversible cleavage and formation of S-N bond within a dicopper center” Tao, W., Yerbulekova, A., Moore, C. E., Shafaat, H. S.*, and Zhang S.* J. Am. Chem. Soc. 2022, 144, 2867–2872 Link
11 “Multiple proton-coupled electron transfers at a tricopper cluster: modeling the reductive regeneration process in multicopper oxidases” Zhang, W., Moore, C. E., and Zhang, S.* J. Am. Chem. Soc. 2022, 144, 1709–1717. Link
10 “Redox-active zinc thiolates for low-cost rechargeable aqueous Zn-ion batteries” Tuttle, M. R., Walter, C., Brackman, E., Moore, C. E., Espe, M., Rasik, C., Adams, P., and Zhang, S.* Chem. Sci. 2021, 12, 15253-15262. ‡ equal contribution. Link
9 “Direct NO reduction by a biomimetic iron(II) pyrazolate MOF” Cai, Z., Tao, Q., Moore, C. E., Zhang, S. Wade, C. R.*, Angew. Chem. Int. Ed. 2021, 60, 21221-21225. Link
8 “Redox-neutral S-nitrosation Mediated by a Dicopper Center” Tao, W. , Moore, C. E., Zhang, S.* Angew. Chem. Int. Ed. 2021, 60, 2-10. Link
7 “Iron (II/III) Halide Complexes Promote the Interconversion of Nitric Oxide and S-nitrosothiols through Reversible Fe-S Interaction” Poptic, A. L., Zhang, S.* Inorg. Chem. 2021, 60, 7, 5190–5197. Link
6 “Synergistic Effect of Hydrogen Bonding and π–π Stacking Enables Long Cycle Life in Organic Electrode Materials” Tuttle M. R., Davis, S. T., Zhang, S.* ACS. Energy Lett. 2021, 6, 643–649. Link
5 “Encapsulation of tricopper cluster in a protein-like cavitand enables facile redox processes from CuICuICuI to CuIICuIICuII states” Zhang W., Moore, C. E., Zhang, S.* Chem. Sci. 2021,12, 2986-2992. Link
4 “C(sp3)-H Fluorination with a Copper(II)/(III) Redox Couple” Bower J. K., Cypcar, A. D., Henriquez, B., Stieber, S. C. E.,* Zhang, S.* J. Am. Chem. Soc., 2020, 142, 8514–8521. Link
3 “Bisthiazolyl Quinones: Stabilizing Organic Electrode Materials with Sulfur-Rich Thiazyl Motifs” Tuttle, M. R., Zhang, S.* Chem. Mater., 2020, 32, 255-261. Link
2 “Dicopper µ-Oxo, µ-Nitrosyl complex from the activation of NO or nitrite at a dicopper center” Tao, W., Bower, J. K., Moore, C. E., Zhang, S.* J. Am. Chem. Soc. 2019, 141, 10159-10164. Link
1 “Four‐Coordinate Copper Halonitrosyl {CuNO}¹⁰ Complexes.” Bower, J. K., Sokolov, A. Yu., Zhang, S.* Angew. Chem., Int. Ed., 2019, 58, 10225-10229. Link
before OSU
10 “Lithium superoxide encapsulated in a benzoquinone anion matrix.” Nava, M., Zhang, S., Pastore, K. S., Feng, X., Lancaster, K. M., Nocera, D. G.,* Cummins, C. C.* PNAS, 2021, 118, e2019392118. Link
9 “Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications.” Stauber, J.; Zhang, S.; Gvozdik, N.; Jiang, Y.; Avena, L.; Stevenson, K. J.*; Cummins, C. C.*, J. Am. Chem. Soc., 2018, 140, 538-541. Link
8 “On the Incompatibility of Metal-Air Battery Technology with CO2.” Zhang, S.†; Nava, M. J.†; Chow, G. K.; Britt, R. D.; Nocera, D. G.*; Cummins, C. C.*, Chem. Sci., 2017, 8, 6117-6122. Link
7 “Insights into Electrochemical Oxidation of NaO2 in Na-O2 Batteries via Rotating Ring Disk and Spectroscopic Measurements.” Morasch, R.; Kwabi, D. G.; Tulodziecki, M.; Risch, M.; Zhang, S.; Shao-Horn, Y.*, ACS Applied Materials & Interfaces, 2017, 9, 4374-4381. Link
6 “A Dinitrogen Dicopper(I) Complex via a Mixed-Valence Dicopper Hydride.” Zhang, S.; Fallah, H.; Gardner, E. J.; Kundu, S.; Bertke, J. A.; Cundari, T. R.; Warren, T. H.*, Angew. Chem., Int. Ed., 2016, 55, 9927 –9931. Link
5 “A Motif for Reversible Nitric Oxide Interactions in Metalloenzymes.” Zhang, S.; Melzer, M. M.; Sen, S. N.; Warren, T. H.*, Nat. Chem., 2016, 8, 663-669. Link
4 “Copper(I) Nitrosyls from Reaction of Copper(II) Thiolates with S‑Nitrosothiols: Mechanism of NO Release from RSNOs at Cu.” Zhang, S.; Çelebi-Ölcü̧m, N.; Melzer, M. M.; Houk, K. N.*; Warren, T. H.*, J. Am. Chem. Soc., 2013, 135, 16746-16749. Link
3 “Three Coordinate Model for CuA Electron-Transfer Site.” Zhang, S.; Warren, T.H. Chem. Sci., 2013, 4, 1786-1792. Link
2 “A Copper(II) Thiolate from Reductive Cleavage of an S-Nitrosothiol.” Melzer, M. M.; Mossin, S.; Cardenas, A. J. P.; Williams, K. D.; Zhang, S.; Meyer, K.*; Warren, T. H.*, Inorg. Chem., 2012, 51, 8658-8660. Link
1 “Bioinspired Silica Surfaces with Near-Infrared Improved Transmittance and Superhydrophobicity by Colloidal Lithography.” Li, Y.; Zhang, Y.; Zhu, S.; Dong, H.; Jia, F.; Wang, Z.; Tang, L.; Zhang, S.; Yang, B.*, Langmuir, 2010, 26, 9842-9847. Link