Publications

Publications in preparation/submitted:

  1. Consistent Second-Order Treatment of Spin–Orbit Coupling and Dynamic Correlation in Quasidegenerate N-Electron Valence Perturbation Theory”, R. Majumder and A. Yu. Sokolov. (submitted, 2024). ArXiv:2404.04716
  2. Quantifying spin contamination in algebraic diagrammatic construction theory of electronic excitations”, T. L. Stahl and A. Yu. Sokolov. (submitted, 2024). ArXiv:2403.06241
  3. Simulating Transient X-ray Photoelectron Spectra of Fe(CO)5 and Its Photodissociation Products With Multireference Algebraic Diagrammatic Construction Theory”, N. P. Gaba, C. E. V. de Moura, R. Majumder, and A. Yu. Sokolov. (submitted, 2024). ArXiv:2402.15599

Journal articles:

  1. Multireference Perturbation Theories Based on the Dyall Hamiltonian”, A. Yu. Sokolov. Adv. Quant. Chem. (accepted, 2024). ArXiv:2401.11262 (Highlight: invited book chapter)
  2. NIR-II Emissive Donor-Acceptor-Donor Fluorophores for Dual Fluorescence Bioimaging and Photothermal Therapy Applications”, N. E. Sparks, C. Smith, T. Stahl, D. L. Amarasekara, C. Hamadani, E. Lambert, S. Wei Tang, A. Kulkarni, B. M. Derbigny, G. S. Dasanayake, G. Taylor, M. Ghazala, N. Hammer, A. Yu. Sokolov, N. Fitzkee, E. E. L. Tanner, D. L. Watkins. J. Mat. Chem. C 12, 4369-4383 (2024).
  3. Two-State Hydrogen Atom Transfer Reactivity of Unsymmetric [Cu2(O)(NO)]2+ Complexes”, S. Carter, W. Tao, R. Majumder, A. Yu. Sokolov, and S. Zhang. J. Am. Chem. Soc. 145, 17779–17785 (2023).
  4. Core-Excited States and X-Ray Absorption Spectra From Multireference Algebraic Diagrammatic Construction Theory”, I. M. Mazin and A. Yu. Sokolov. J. Chem. Theory Comput. 19, 4991–5006 (2023).
  5. Algebraic Diagrammatic Construction Theory for Simulating Charged Excited States and Photoelectron Spectra”, S. Banerjee and A. Yu. Sokolov. J. Chem. Theory Comput. 19, 3037–3053 (2023). (Highlight: invited review).
  6. Electronic Structure and Ultrafast Electron Dynamics in CuO Photocatalysts Probed by Surface Sensitive Femtosecond X-ray Absorption Near-Edge Structure Spectroscopy”, S. Bandaranayake, A. Patnaik, E. Hruska, Q. Zhu, A. Yu. Sokolov, and L. R. Baker. J. Phys. Chem. Lett. 14, 3643-3650 (2023).
  7. C(sp3)-H Cyanation by a Formal Copper(III) Cyanide Complex via Oxidative Asynchronous PCET”, J. K. Bower, M. S. Reese, I. M. Mazin, L. M. Zarnitsa, A. D. Cypcar, C. E. Moore, A. Yu. Sokolov, and S. Zhang. Chem. Sci. 14, 1301-1307 (2023).
  8. Simulating Spin–Orbit Coupling With Quasidegenerate N-Electron Valence Perturbation Theory”, R. Majumder and A. Yu. Sokolov. J. Phys. Chem. A 127, 546-559 (2023). (Highlight: invited article, “Early-Career and Emerging Researchers in Physical Chemistry” special issue).
  9. Electrochemical Strategy for Proton Relay Installation Enhances the Activity of a Hydrogen Evolution Electrocatalyst”, S. Lin, S. Banerjee, M. Fortunato, C. Xue, J. Huang, A. Yu. Sokolov, and C. Turro. J. Am. Chem. Soc. 144, 20267-20277 (2022).
  10. Non-Dyson Algebraic Diagrammatic Construction Theory for Charged Excitations in Solids”, S. Banerjee and A. Yu. Sokolov. J. Chem. Theory Comput. 18, 5337-5348 (2022).
  11. Quantifying and reducing spin contamination in algebraic diagrammatic construction theory of charged excitations”, T. L. Stahl, S. Banerjee, and A. Yu. Sokolov. J. Chem. Phys. 157, 044106 (2022).
  12. Simulating X-ray Photoelectron Spectra With Strong Electron Correlation Using Multireference Algebraic Diagrammatic Construction Theory”, C. E. V. de Moura and A. Yu. Sokolov, Phys. Chem. Chem. Phys. 24, 4769 (2022). (Highlight: PCCP HOT Article). (Correction).
  13. Multireference algebraic diagrammatic construction theory for excited states: Extended second-order implementation and benchmark”, I. M. Mazin and A. Yu. Sokolov, J. Chem. Theory Comput. 17, 6152 (2021).
  14. Efficient implementation of the single-reference algebraic diagrammatic construction theory for charged excitations: Applications to the TEMPO radical and DNA base pairs”, S. Banerjee and A. Yu. Sokolov, J. Chem. Phys. 154, 074105 (2021). (Highlight: invited article, “2021 JCP Emerging Investigators Special Collection” special issue)
  15. Assessing the orbital-optimized unitary Ansatz for density cumulant theory”, J. P. Misiewicz, J. M. Turney, H. F. Schaefer III, and A. Yu. Sokolov, J. Chem. Phys. 153, 244102 (2020).
  16. Extended second-order multireference algebraic diagrammatic construction theory for charged excitations”, K. Chatterjee and A. Yu. Sokolov, J. Chem. Theory Comput. 16, 6343 (2020).
  17. Recent developments in the PySCF program package”, Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov, G. H. Booth, J. Chen, Z. Cui, J. J. Eriksen, Y. Gao, S. Guo, J. Hermann, M. R. Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li, J. Liu, N. Mardirossian, J. D. McClain, M. Motta, B. Mussard, H. Q. Pham, A. Pulkin, W. Purwanto, P. J. Robinson, E. Ronca, E. Sayfutyarova, M. Scheurer, H. F. Schurkus, J. E. T. Smith, C. Sun, S. Sun, S. Upadhyay, L. K. Wagner, X. Wang, A. White, J. D. Whitfield, M. J. Williamson, S. Wouters, J. Yang, J. M. Yu, T. Zhu, T. C. Berkelbach, S. Sharma, A. Yu. Sokolov, and G. K.-L. Chan, J. Chem. Phys. 153, 024109 (2020).

  18. Psi4 1.4: Open-source software for high-throughput quantum chemistry”, D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R Brooks, H. F. Schaefer, A. Yu. Sokolov, K. Patkowski, A. E DePrince, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill, J. Chem. Phys. 152, 184108 (2020).

  19. Third-order algebraic diagrammatic construction theory for electron attachment and ionization energies: Conventional and Green’s function implementation”, S. Banerjee and A. Yu. Sokolov, J. Chem. Phys. 151, 224112 (2019). (Erratum)
  20. Second-order multireference algebraic diagrammatic construction theory for photoelectron spectra of strongly correlated systems”, K. Chatterjee and A. Yu. Sokolov, J. Chem. Theory Comput. 15, 5908 (2019).
  21. Four-coordinate copper halonitrosyl {CuNO}10 complexes”, J. Bower, A. Yu. Sokolov, and S. Zhang, Angew. Chem. Int. Ed. 58, 10225 (2019).
  22. Simulating X-ray absorption spectra with linear-response density cumulant theory”, R. Peng, A. V. Copan, and A. Yu. Sokolov, J. Phys. Chem. A 123, 1840 (2019). (Highlight: invited article, “Young Scientists” virtual special issue)
  23. Multi-reference algebraic diagrammatic construction theory for excited states: General formulation and first-order implementation”, A. Yu. Sokolov, J. Chem. Phys. 149, 204113 (2018). (Highlight: JCP Editor’s Pick Article)
  24. Linear-response density cumulant theory for excited electronic states”, A. V. Copan and A. Yu. Sokolov, J. Chem. Theory Comput. 14, 4097 (2018).
  25. Journal articles before moving to the Ohio State University:

  26. Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability”, R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E DePrince, E. G. Hohenstein, U. Bozkaya, A. Yu. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill, J. Chem. Theory Comput. 13, 3185 (2017).
  27. Time-dependent N-electron valence perturbation theory with matrix product state reference wavefunctions for large active spaces and basis sets: Applications to the chromium dimer and all-trans polyenes”, A. Yu. Sokolov, S. Guo, E. Ronca, and G. K.-L. Chan, J. Chem. Phys. 146, 244102 (2017).
  28. Spin-adapted formulation and implementation of density cumulant functional theory with density-fitting approximation: Application to transition metal compounds”, X. Wang, A. Yu. Sokolov, J. M. Turney, and H. F. Schaefer, J. Chem. Theory Comput. 12, 4833 (2016).
  29. A time-dependent formulation of multi-reference perturbation theory”, A. Yu. Sokolov and G. K.-L. Chan, J. Chem. Phys. 144, 064102 (2016). (Highlight: JCP 2016 Editor’s Choice Article)
  30. Can density cumulant functional theory describe static correlation effects?”, J. W. Mullinax, A. Yu. Sokolov, and H. F. Schaefer, J. Chem. Theory Comput. 11, 2487 (2015).
  31. A transformed framework for dynamic correlation in multireference problems”, A. Yu. Sokolov and G. K.-L. Chan, J. Chem. Phys. 142, 124107 (2015). (Erratum)
  32. Density cumulant functional theory from a unitary transformation: N-representability, three-particle correlation effects, and application to O4+”, A. Yu. Sokolov, H. F. Schaefer, and W. Kutzelnigg, J. Chem. Phys. 141, 074111 (2014).
  33. Conical intersections and low-lying electronic states of tetrafluoroethylene”, J. W. Mullinax, A. Yu. Sokolov, and H. F. Schaefer, ChemPhysChem 15, 2359 (2014).
  34. Benchmark study of density cumulant functional theory: thermochemistry and kinetics”, A. V. Copan, A. Yu. Sokolov, and H. F. Schaefer, J. Chem. Theory Comput. 10, 2389 (2014).
  35. Orbital-optimized density cumulant functional theory”, A. Yu. Sokolov, and H. F. Schaefer, J. Chem. Phys. 139, 204110 (2013).
  36. Free cyclooctatetraene dianion: planarity, aromaticity, and theoretical challenges”, A. Yu. Sokolov, D. B. Magers, J. I. Wu, W. D. Allen, P. v. R. Schleyer, and H. F. Schaefer, J. Chem. Theory Comput. 9, 4436 (2013).
  37. BeCH2: the simplest metal carbene. High levels of theory”, Y. Qiu, A. Yu. Sokolov, Y. Yamaguchi, and H. F. Schaefer, J. Phys. Chem. A 117, 9266 (2013).
  38. Structures and transition states of Ge2CH2”, S. Vogt-Geisse, A. Yu. Sokolov, S. R. McNew, Y. Yamaguchi, and H. F. Schaefer, J. Phys. Chem. A 117, 5765 (2013).
  39. Density cumulant functional theory: the DC-12 method, an improved description of the one-particle density matrix”, A. Yu. Sokolov, A. C. Simmonett, and H. F. Schaefer, J. Chem. Phys. 138, 024107 (2013).
  40. Characterization of the t-butyl radical and its elusive anion”, A. Yu. Sokolov, S. Mittal, A. C. Simmonett, and H. F. Schaefer, J. Chem. Theory Comput. 8, 4323 (2012).
  41. Analytic gradients for density cumulant functional theory: the DCFT-06 model”, A. Yu. Sokolov, J. J. Wilke, A. C. Simmonett, and H. F. Schaefer, J. Chem. Phys. 137, 054105 (2012).
  42. Ground and excited state properties of photoactive platinum(IV) diazido complexes: theoretical considerations”, A. Yu. Sokolov, and H. F. Schaefer, Dalton Trans. 40, 7571 (2011).
  43. Coordination properties of bridging diazene ligands in unusual diiron complexes”, A. Yu. Sokolov, and H. F. Schaefer, Organometallics 29, 3271 (2010).
  44. Quantum-chemical study of trans influence in gold(I) linear complexes”, A. Yu. Sokolov, and O. V. Sizova, Russ. J. Gen. Chem. 80, 1223 (2010).
  45. Synthesis and spectral characteristics of a novel heterometallic binuclear complex on the basis of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazin”, V. V. Pakal’nis, A. Yu. Sokolov, A. A. Slisenko, M. E. Borovitov, S. P. Tunik, and O. V. Sizova, Russ. J. Gen. Chem. 79, 980 (2009).
  46. Atomic-orbital-symmetry based σ-, π-, and δ-decomposition analysis of bond orders”, O. V. Sizova, L. V. Skripnikov, A. Yu. Sokolov, and V. V. Sizov, Int. J. Quant. Chem. 109, 2581 (2009).
  47. Calculation of σ-, π-, and δ-components of quantum-chemical bond orders”, O. V. Sizova, L. V. Skripnikov, and A. Yu. Sokolov, Russ. J. Gen. Chem. 78, 2146 (2008).
  48. Symmetry decomposition of quantum-chemical bond orders”, O. V. Sizova, L. V. Skripnikov, and A. Yu. Sokolov, J. Mol. Struct. (THEOCHEM) 870, 1 (2008).
  49. BO3 molecular structures: examples of the importance of electron correlation”, A. Yu. Sokolov, N. J. Stibrich, and H. F. Schaefer, Coll. Czech. Chem. Commun. 73, 1495 (2008).
  50. Quantum-chemical study of donor-acceptor interactions in chelate dicarbonyl complexes of rhodium(I)”, O. V. Sizova, A. Yu. Sokolov, and L. V. Skripnikov, Russ. J. Coord. Chem. 33, 800 (2007).
  51. Quantum chemical study of the bond orders in the ruthenium, diruthenium and dirhodium nitrosyl complexes”, O. V. Sizova, A. Yu. Sokolov, L. V. Skripnikov, and V. I. Baranovski, Polyhedron 26, 4680 (2007).
  52. Rhodium and ruthenium tetracarboxylate nitrosyl complexes: electronic structure and metal-metal bond”, O. V. Sizova, L. V. Skripnikov, A. Yu. Sokolov, and N. V. Ivanova, Russ. J. Coord. Chem. 33, 588 (2007).
  53. Features of the electronic structure of ruthenium tetracarboxylates with axially coordinated nitric oxide (II)”, O. V. Sizova, L. V. Skripnikov, A. Yu. Sokolov, and O. O. Lyubimova, J. Struct. Chem. 48, 28 (2007).