Publications at OSU


  • 32. Treviño, R. E., and Shafaat, H. S., (2022). Protein-based models offer mechanistic insight into complex nickel metalloenzymes. Curr. Opinion in Chemical Biology [Link]

  • 31. Tao, W., Yerbulekova, A., Moore, C., Shafaat, H. S., and Zhang, S.(2022). Controlling the direction of S-nitrosation vs. denitrosation: reversible cleavage and formation of S-N bond within a dicopper center. J. Am. Chem. Soc. [Link]

  • 30. Wang, H., Cleary, M. B., Lewis, L. C., Bacon, J. W., Caravan, P., Shafaat, H. S., and Gale, E. M.(2022). Enzyme Control Over Ferric Iron Magnetostructural Properties. Angewandte Chemie International Edition [Link]


  • 29. Shafaat, H. S., and Yang, J.Y.(2021). Uniting Biological and Chemical Strategies for Selective CO2 Reduction. Nature Catalysis [Link]

  • 28. Lewis, L.C., and Shafaat, H. S. (2021). Reversible electron transfer and substrate binding support [NiFe3S4] ferredoxin as a protein-based model for [NiFe] carbon monoxide dehydrogenase Inorg. Chem. [Link]

  • 27. Gardner, E.J., Marguet, S.C., Cobb, C.R., Pham, D.M., Beringer, J.A.M., Bertke, J.A., Shafaat, H. S. and Warren, T.H. (2021). Uncovering Redox Non-innocent Hydrogen-Bonding in Cu(I)-Diazene Complexes J. Am. Chem. Soc. [Link]
  • 26. Shafaat, H. S. (2021). 8.27 – [NiFe] Hydrogenases: A Paradigm for Bioinorganic Hydrogen Conversion. Comprehensive Coordination Chemistry III (Third Edition) [Link]

  • 25. Nichols, A.W., Cook, E.N., Gan, Y.J., Miedaner, P.R., Dressel, J.M., Dickie, D.A., Shafaat, H. S. and Machan, C.W. (2021). Pendent Relay Enhances H2O2 Selectivity during Dioxygen Reduction Mediated by Bipyridine-Based Co–N2O2 Complexes. J. Am. Chem. Soc. [Link]

  • 24. Naughton, K.J.,Treviño, R.E., Moore, P.J., Wertz, A.E., Dickson, J.A., and Shafaat, H. S. (2021). In Vivo Assembly of a Genetically Encoded Artificial Metalloenzyme for Hydrogen Production. ACS Synth. Biol. [Link]

  • 23. Kisgeropoulos, E.C., Manesis, A.C., and Shafaat, H. S. (2021). Ligand Field Inversion as a Mechanism to Gate Bioorganometallic Reactivity: Investigating a Biochemical Model of Acetyl CoA Synthase Using Spectroscopy and Computation. J. Am. Chem. Soc. 143, 2, 849–867 [Link]


  • 22. Wang, H., Wong, A., Lewis, L.C., Nemeth, G.R., Jordan, V.C., Bacon, J.W., Caravan, P., Shafaat, H. S. and Gale, E.M. (2020). Rational Ligand Design Enables pH Control over Aqueous Iron Magnetostructural Dynamics and Relaxometric PropertiesInorg. Chem. 59, 23, 17712-17721 [Link]
  • 21. Dhakal S., Shafaat, H. S. and Balasubramaniam, V.M. (2020). Thermal and high-pressure treatment stability of egg-white avidin in aqueous solution. J. Food Process Eng. 43, 9, 13481 [Link]
  • 20. McGarry, K.G., Lalisse, R.F., Moyer, R.A., Johnson, K.N., Tallan, A.M., Winters, T.P., Taris, J.E., McElroy, C.A., Lemmon, E.E. Shafaat, H. S., Fan, Y., Deal A., Marguet, S.C., Harvilchuck, J.A., Hadad, C.M. and Wood, D.W. (2020). A Novel, Modified Human Butyrylcholinesterase Catalytically Degrades the Chemical Warfare Nerve Agent, Sarin. Toxicological Sciences 174, 1, 133-146 [Link]

  • 19. Treviño, R.E., Slater, J.W., and Shafaat, H. S. (2021). Robust Carbon-Based Electrodes for Hydrogen Evolution through Site-Selective Covalent Attachment of an Artificial Metalloenzyme. ACS Appl. Energy Mater. 3, 11, 11099–11112 [Link]

  • 18. Yu, Z., Thompson, Z., Behnke, S. L., Fenk, K. D., Huang, D., Shafaat, H. S., and Cowan, J. A. (2020). Metalloglycosidase Mimics: Oxidative Cleavage of Saccharides Promoted by Multinuclear Copper Complexes under Physiological Conditions. Inorg. Chem., 59, 16, 11218–11222 [Link]

  • 17. Kisgeropoulos, E. C., Griese, J. J., Smith, Z. R., Branca, R. M. M., Schneider, C. R., Högbom, M., and Shafaat, H. S. (2020). Key Structural Motifs Balance Metal Binding and Oxidative Reactivity in a Heterobimetallic Mn/Fe Protein J. Am. Chem. Soc., 142, 11, 5338–5354 [Link]


  • 16. Marguet, S. C., Stevenson, M. J., and Shafaat, H. S. (2019). Intramolecular Electron Transfer Governs Photoinduced Hydrogen Evolution by Nickel-Substituted Rubredoxin: Resolving Elementary Steps in Solar Fuel Generation. J. Phys. Chem. B., 123, 46, 9792-9800 [Link]

  • 15. Schneider, C. R., Lewis, L. C., and Shafaat, H. S. (2019). The good, the neutral, and the positive: buffer identity impacts CO2 reduction activity by nickel(II) cyclam. Dalton Trans., 48, 15810-15821 [Link]

  • 14. Slater, J. W., Marguet, S. C., Gray, M. E., Monaco, H. A., Sotomayor, M., Shafaat, H. S. (2019). The Power of The Secondary Sphere: Modulating Hydrogenase Activity in Nickel-Substituted Rubredoxin. ACS Catalysis, 9, 10, 8928-8942 [Link]

  • 13. Manesis, A. C., Musselman, B. W., Keegan, B. C., Shearer, J., Lehnert, N., and Shafaat, H. S. (2019). A Biochemical Nickel(I) State Supports Nucleophilic Alkyl Addition: A Roadmap for Methyl Reactivity in Acetyl Coenzyme A Synthase. Inorganic Chemistry, 58, 14, 8969-8982 [Link]


  • 12. Behnke, S. L., Manesis, A. C., and Shafaat, H. S. (2018). Spectroelectrochemical investigations of nickel cyclam indicate different reaction mechanisms for electrocatalytic CO2 and H+ reduction. Dalton Transactions, 47, 15206-15216. [Link]

  • 11. Slater, J. W., Marguet, S. C., Monaco, H. A., and Shafaat, H. S. (2018). Going beyond structure: Nickel-substituted rubredoxin is a mechanistic model for the [NiFe] hydrogenase. Journal of the American Chemical Society (JACS), 140 (32), 10250–10262. [Link]

  • 10. Schneider, C. R., Manesis, A. C., Stevenson, M. J., and Shafaat, H. S. (2018). A photoactive semisynthetic metalloenzyme exhibits complete selectivity for CO2 reduction in water. Chemical. Communications, 54, 4681-4684. [Link]

  • 9. Maugeri, P. T., Griese, J. J., Branca, R. M., Miller, E. F., Smith, Z. R., Eirich, J., Högbom, M., and Shafaat, H. S. (2018). Driving protein conformational changes with light: Photoinduced structural rearrangement in a heterobimetallic oxidase. Journal of the American Chemical Society (JACS), 140 (4), 1471–1480. [Link]


  • 8. Stevenson, M. J., Marguet, S. C., Schneider, C. R., and Shafaat, H. S. (2017). Light-driven hydrogen evolution by nickel-substituted rubredoxin. ChemSusChem, 10 (22), 4424-4429. [Link]

  • 7. Manesis, A. C., O’Connor, M. J., Schneider, C. R., and Shafaat, H. S. (2017). Multielectron Chemistry Within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl CoA Synthase. Journal of the American Chemical Society (JACS), 139 (30), 10328–10338. [Link]

  • 6. Miller, E. K., Trivelas, N. T., Maugeri, P. T., Blaesi, E.J., and Shafaat, H.S. (2017). Time-Resolved Investigations of Heterobimetallic Cofactor Assembly in R2lox Reveal Distinct Mn/Fe Intermediates. Biochemistry, 56 (26), 3369-3379. [Link]

  • 5. Slater, J. W., Marguet, S. C., Cirino, S. L., Maugeri, P. T., and Shafaat, H. S. (2017). Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme. Inorganic Chemistry, 56 (7), 3926-3938. [Link]



  • 4. Schneider, C. R., and Shafaat, H. S. (2016). An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme. Chemical Communications, 52 (64), 9889-9892. [Link]



  • 3. Behnke, S. L. and Shafaat, H. S. (2015). Heterobimetallic Models of the [NiFe] Hydrogenases: A Structural and Spectroscopic Comparison. Comments on Inorganic Chemistry, 36 (3), 123-140. [Link]


  • 2. Slater, J. W. and Shafaat, H. S. (2015). Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase. Journal of Physical Chemistry Letters, 6, 3731-3736. [Link]


  • 1. Manesis, A. C. and Shafaat, H. S. (2015). Electrochemical, spectroscopic, and density functional theory characterization of redox activity in nickel-substituted azurin: a model  for acetyl-CoA synthase. Inorganic Chemistry, 56 (16) 7959-7967. [Link]

Publications Before OSU


Screen Shot 2016-08-29 at 7.52.14 PM

  • 21. Katz, S., Noth, J., Horch, M., Shafaat, H. S., Happe, T., Hildebrandt, P., & Zebger, I. (2016). Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution. Chemical Science. [Link]


  • 20. Kutin, Y.; Srinivas, V.; Fritz, M.; Kositzki, R.; Shafaat, H. S.; Birrell, J.; Bill, E.; Haumann, M.; Lubitz, W.; Högbom, M.; Griese, J. J.; Cox, N. (2016) Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins. J. Inorg. Biochem.  [Link]


  • 19. Hugenbruch, S., Shafaat, H. S., Krämer, T., Delgado-Jaime, M. U., Weber, K., Neese, F., Lubitz, W., and DeBeer, S. (2016). In search of metal hydrides: an X-ray absorption and emission study of [NiFe] hydrogenase model complexes. Phys. Chem. Chem. Phys.  18 (16), 10688-10699 [Link]



  • 18. Larson, B.C., Pomponio J. R., Shafaat, H. S., Kim R. H., Leigh B.S., Tauber M. J., and Kim, J. E. (2015) Photogeneration and Quenching of Tryptophan Radical in Azurin. J. Phys. Chem. B, 119, (29) 9438-9449. [Link]


  • 17. Rapatskiy L., Ames W. M., Pérez-Navarro M., Savitsky A., Griese J. G., Weyhermüller T., Shafaat H. S., Högbom M., Neese F., Pantazis D. A., and Cox, N. (2015) Characterization of Oxygen Bridged Manganese Model Complexes Using Multifrequency 17O-Hyperfine EPR Spectroscopies and Density Functional Theory. J. Phys. Chem. B. [Link]



  • 16. Shafaat, H. S., Griese, J. J., Pantazis, D. A., Roos, K., Andersson, C. S., Popović-Bijelić, A., Gräslund, A., Siegbahn, P. E. M., Neese, F., Lubitz, W., Högbom, M., Cox, N. (2014). Electronic structural flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J. Am. Chem. Soc. 136 (38) 13399-13409.  [Link]


  • 15. Shafaat, H. S., Kim, J.E. (2014) Resonance Raman Analysis of the Tryptophan Cation Radical. J. Phys. Chem. Lett. 5, 3009-3014.  [Link]



  • 14. Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E. M., Högbom, M. (2013). Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein. Proc. Natl. Acad. Sci. 110 (43), 17189-17194.  [Link]


  • 13. Riethausen, J., Rüdiger, O., Gärtner, W., Lubitz, W., and Shafaat, H. S. (2013). Spectroscopic and electrochemical characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: Reversible redox behavior and interactions between electron transfer centers. ChemBioChem 14, 1714-1719. [Link]


  • 12. Shafaat, H. S., Rüdiger, O., Ogata, H., and Lubitz, W.  (2013). [NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditions. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1827, 986-1002. [Link]


  • 11. McLaughlin, M., Retegan, M., Bill, E., Payne, T., Shafaat, H. S., Peña, S., Sudhamsu, J., Ensign, A., Crane, B., Neese, F., Holland, P. (2012). Azurin as a protein scaffold for a low-coordinate non-heme iron site with a small-molecule binding pocket. J. Am. Chem. Soc., 134, 19746-19757. [Link]


  • 10. Weber, K., Krämer, T., Shafaat, H. S., Weyhermuller, T., Bill, E., van Gastel, M., Neese, F., and Lubitz, W.  (2012). A functional [NiFe]-hydrogenase model compound that undergoes biologically relevant reversible thiolate protonation. J. Am. Chem. Soc. 134, 20745-20755. [Link]


  • 9. Shafaat, H. S., Weber, K., Petrenko, T., Neese, F., and Lubitz, W.  (2012). Key Hydride Vibrational Modes in [NiFe] Hydrogenase Model Compounds Studied by Resonance Raman Spectroscopy and Density Functional Calculations. Inorg. Chem. 51, 11787-11797. [Link]



  • 8. Stoll, S., Shafaat, H. S., Krzystek, J., Ozarowski, A., Tauber, M. J., Kim, J. E., and Britt, R. D.  (2011) Hydrogen Bonding of Tryptophan Radicals Revealed by EPR at 700 GHz. J. Am. Chem. Soc. 133, 18098-18101. [Link]



  • 7. Shafaat, H. S., Leigh, B. S., Tauber, M. J., and Kim, J. E.  (2010) Spectroscopic Comparison of Photogenerated Tryptophan Radicals in Azurin: Effects of Local Environment and Structure. J. Am. Chem. Soc. 132, 9030-9039. [Link]



  • 6. Shafaat, H. S., Sanchez, K. M., Neary, T. J., and Kim, J. E.  (2009) Ultraviolet resonance Raman spectroscopy of a beta-sheet peptide: a model for membrane protein folding. J. Raman Spectrosc. 40, 1060-1064. [Link]


  • 5. Shafaat, H. S., Leigh, B. S., Tauber, M. J., and Kim, J. E.  (2009) Resonance Raman Characterization of a Stable Tryptophan Radical in an Azurin Mutant. J. Phys. Chem. B 113, 382-388. [Link]



  • 4. Connon, S. A., Lester, E. D., Shafaat, H. S., Obenhuber, D. C., & Ponce, A. (2007) Bacterial diversity in hyperarid Atacama Desert soils. Journal of Geophysical Research: Biogeosciences. 112(G4). [Link]


  • 3. Yung, P. T., Shafaat, H. S., Connon, S. A., & Ponce, A. (2007) Quantification of viable endospores from a Greenland ice core. AFEMS microbiology ecology. 59(2), 300-306. [Link]


Screen Shot 2016-08-29 at 7.31.30 PM

  • 2. Shafaat, H. S. and Ponce, A.(2006) Applications of a Rapid Endospore Viability Assay for Monitoring UV Inactivation and Characterizing Arctic Ice Cores. Applied and Environmental Microbiology. 72.10, 6808-6814. [Link]


  • 1. Shafaat, H. S., Cable, M. L., Ikeda, M. K., Kirby, J. P., Pelletier, C. C., Ponce, A. (2005). Towards an in
    situ endospore detection instrument. Aerospace, 2005 IEEE Conference: 660-669. [Link]